1.本发明涉及一种高温形状记忆泡沫复合材料及其制备方法与堵漏应用,属于钻井智能堵漏技术领域。
背景技术:2.井漏严重影响钻井安全和效率,造成资源浪费和成本增加。目前,已开发了各种防漏、堵漏材料,如桥接堵漏、高失水堵漏、自适应堵漏、复合堵漏材料等。其中,桥接堵漏材料因其成本低、施工简单方便而最为常用,但对于具有多尺度、不确定性复杂裂缝、表面光滑裂缝的地层,桥接堵漏难以实现高效封堵、且易出现反复漏失。形状记忆堵漏材料对不同尺度裂缝的自适应性好,可随钻井液输送至漏层,并利用漏层温度激活、热膨胀回复至原有状态,由此快速、自适应地对不同尺度裂缝进行有效地架桥封堵。可使用温控形状记忆合金、形状记忆聚合物(如聚氨酯、聚苯乙烯、聚降冰片烯)等作为智能堵漏材料,其中形状记忆聚合物具有加工性能好、密度小、刺激响应温度可调控等优点而在钻井堵漏领域具有较好的应用与发展前景。
3.随着油气开发逐渐走向深层、高温地层,要求堵漏用的形状记忆聚合物要具有较高的形状记忆转变温度。通常,环氧、氰酸酯、聚酰亚胺类形状记忆聚合物具有较高的激发转变温度,但考虑实际应用中的加工、成本等因素,形状记忆环氧聚合物更适合作为高温地层强化井壁和堵漏的材料。
4.环氧聚合物主要由含两个及以上环氧基团的单体与固化剂通过缩合、交联反应而制成,形成较高的交联度方可获得较高的玻璃化转变温度tg-较高的形状转变激发温度,以满足深层、高温地层堵漏需求。但较高的交联度导致环氧聚合物的韧性降低,形状记忆性能变差;添加增韧剂,可提高形状记忆环氧聚合物的韧性,但tg降低,机械强度降低,不利于高温承压、堵漏应用。
5.将不同类型的填料加入到聚合物中,制备形状记忆复合材料,可有效提高形状记忆环氧聚合物的机械性能和耐热性能,同时不影响其形状记忆性能。为有效发挥填料的增强作用,需要填料在聚合物中能较均匀的分散。
6.此外,深层、高温地层承压、堵漏时,关注材料在高温下的力学性能,但目前在制备兼具高温性能、记忆性能的环氧材料方面还缺乏有效手段。
7.再者,环氧聚合物自身强度高、密度大,在制备形状记忆材料的赋形过程中,可压缩量低,不易实现形状记忆堵漏剂所要求的大体积变化。目前,通过充填空心玻璃微珠、空心聚合物微球等可制备具有闭孔结构的形状记忆环氧树脂泡沫,提高其可压缩性。但是,在提高交联度获取高形状记忆转变温度后,不易发泡、获得较高的压缩、膨胀倍率且同时保持较好的形状回复能力,不利于制备深层、高温地层用、可发生大体积变化的承压堵漏材料。
8.综上,针对深层、高温地层堵漏,仍需要开发具有高转变温度、室温和高温下整体强度高、韧性强且压缩膨胀率大的形状记忆材料。
技术实现要素:9.本发明针对目前堵漏用环氧形状记忆聚合物材料存在的高tg-高形状记忆转变温度、高韧性、高温下高强度以及高膨胀率等难以兼具,不能满足深层、高温地层堵漏需求的问题,提供一种基于皮克林乳液模板聚合方法制备高温形状记忆环氧泡沫复合材料的方法,所制备的材料能够作为智能堵漏剂。
10.本发明所提供的高温形状记忆环氧泡沫复合材料的制备方法,包括如下步骤:
11.s1、将纳米粒子的水分散液与环氧单体混合,经搅拌得到稳定的水在油中皮克林乳液;将固化剂加入至所述皮克林乳液中形成反应乳液;
12.s2、将所述反应乳液倒入模具中,升温固化,得到所述形状记忆环氧泡沫复合材料。
13.上述的制备方法中,步骤s1中,所述纳米粒子为聚多酚纳米粒子、氧化锌纳米粒子或石墨烯纳米片;
14.所述聚多酚纳米粒子为聚多巴胺纳米粒子、聚单宁酸纳米粒子或聚邻苯二酚纳米粒子,粒径为100~400nm;
15.所述氧化锌纳米粒子的粒径为100~400nm;
16.所述石墨烯纳米片的尺寸为5~50μm;
17.所述水分散液中,所述纳米粒子的质量百分含量为1~8%,如1~3%。
18.上述的制备方法中,步骤s1中,所述环氧单体为含有2~4个环氧基团的单体,为下述单体中的一种或两种:
19.双酚a二缩水甘油醚(如e51、e44)、1,3-双(缩水甘油基氧基丙基)-1,1,3,3-四甲基二硅氧烷(bgted)、三羟甲基丙烷三缩水甘油醚(tmtge)、蓖麻油三缩水甘油醚(coge)和4.4-二氨基二苯甲烷四缩水甘油胺(tgdom)。
20.上述的制备方法中,步骤s1中,所述皮克林乳液中,油相与水相的质量比为3:1~2。
21.上述的制备方法中,步骤s1中,所述固化剂为酸酐和/或多元胺;
22.所述酸酐为甲基六氢苯酐-mhhpa;
23.所述多元胺为三乙烯四胺、聚醚胺(如d230、d400)和二氨基二苯甲烷(ddm)中至少一种;
24.所述环氧单体与所述固化剂的摩尔比为1:0.3~1,如1:0.3~0.86、1:0.3~0.8、1:0.3~0.42、1:0.3、1:0.36、1:0.42、1:0.8或1:0.86。
25.上述的制备方法中,步骤s1中,在50~80℃水浴下、转速为6000~10000rpm、搅拌5~15min得到所述皮克林乳液;
26.将所述固化剂在50~80℃的条件下加热5~10min后加入至所述皮克林乳液中。
27.上述的制备方法中,步骤s2中,所述升温固化的条件如下:
28.在60~90℃固化1~2h,100~120℃固化1~2h,130~150℃固化2-4h。
29.在所述升温固化的过程中去除水分。
30.本发明方法制备的包含纳米粒子的形状记忆泡沫复合材料,动态热机械分析(dma)170~200℃下橡胶态储能模量为10~30mpa;油浴中加热,在高于泡沫复合材料玻璃化转变温度20~30℃的温度下弯折u形并室温固定,然后在油浴中加热测试其形状回复温
度为80~170℃,形状回复率为95~100%。
31.在高于所述高温形状记忆环氧泡沫复合材料的玻璃化转变温度20~30℃的温度下,将所述高温形状记忆环氧泡沫复合材料压制成片材,冷却至室温,切割、粉碎成颗粒状,作为形状记忆堵漏剂。
32.将得到的形状记忆堵漏剂与碳酸钙颗粒、纤维材料进行组合作为堵漏组合物,可用于裂缝封堵,堵漏剂在其激发转变温度下膨胀,自适应地封堵裂缝;
33.三者的质量比可为:
34.形状记忆堵漏剂5~10,碳酸钙颗粒6~12,纤维材料0.2;
35.所述碳酸钙颗粒的粒径可为10~20目、20~40目或40~80目;
36.所述纤维材料可为玄武岩纤维或碳纤维,纤维长度为3~5mm。
37.本发明具有如下有益效果:
38.本发明利用皮克林乳液模板进行环氧单体和固化剂的聚合,同时结合了发泡和填料粒子增强技术,制备了兼具高转变温度、高强度和韧性以及高压缩率的形状记忆环氧泡沫复合材料。
39.本发明使用纳米填料粒子作为皮克林乳液的稳定剂,实现了粒子在环氧基体中的均匀分散;通过皮克林乳液模板聚合,获得了高温记忆性能、机械性能以及压缩膨胀性能整体优良的环氧聚合物材料。
40.本发明所制备的高温形状记忆泡沫复合材料可满足深层、高温地层堵漏需求,将所制形状记忆泡沫复合材料作为堵漏剂,通过其在高温下的自适应膨胀,可有效实现裂缝封堵。
附图说明
41.图1为本发明皮克林乳液模板聚合制备形状记忆环氧泡沫复合材料过程的示意图,1-环氧单体,2-填料粒子,3-水,4-固化剂
具体实施方式
42.下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
43.下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
44.下述实施例中,按照下述方法测定泡沫复合材料的膨胀率:
45.将压缩后、室温固定形状的样品(高度h0),在油浴中加热,测试样品高度h1,计算膨胀率:
[0046][0047]
下述实施例中,按照下述方法测定实验浆的漏失量:
[0048]
采用长裂缝封堵实验装置测试含堵漏剂实验浆在室温和形状转变温度下的封堵性能,所述的裂缝为开度为2
×
1mm、3
×
2mm、4
×
3mm的狭长裂缝,室温测试实验浆完全漏失,而形状转变温度下测试,实验浆承压10~20mpa。
[0049]
实施例1、
[0050]
制备流程图如图1所示。
[0051]
在一烧杯中加入水、聚多巴胺纳米粒子(100nm,1%)、环氧单体e51,油相/水相质量比为3/2,置于60℃水浴中,使用均质器在10000rpm下搅拌5min,形成稳定的水在油中皮克林乳液;将固化剂甲基六氢苯酐-mhhpa在60℃加热5min,在搅拌下缓慢加入所形成乳液中,环氧单体与固化剂的摩尔比为1/0.3;将配制好的乳液倒入模具中,放入烘箱,在60℃固化1h,100℃固化2h,130℃固化2h,150℃固化2h,得到泡沫复合材料。
[0052]
动态热机械分析(dma)170-200℃下所得复合材料的橡胶态储能模量为10mpa;油浴中u形弯折测试其形状记忆转变温度为100℃,加热至转变温度以上时的形状回复率为95%,膨胀率350%。
[0053]
在所得泡沫复合材料玻璃化转变温度+20~30℃的温度下,将泡沫复合材料压制成片材,保压冷却至室温,固定形状,然后切割、粉碎成颗粒状,作为形状记忆堵漏剂;将所得形状记忆堵漏剂(10%)与碳酸钙颗粒(12%,其中,10~20目碳酸钙4%,20~40目碳酸钙4%,40~80目碳酸钙4%)、纤维材料(3mm,玄武岩纤维)0.2%加到1.5l的4%膨润土基础浆液中,采用长裂缝(4
×
3mm)封堵实验装置测试堵漏剂的封堵性能,室温测试-完全漏失,100℃测试-承压10mpa,漏失量100ml。
[0054]
实施例2、
[0055]
将水、聚单宁酸纳米粒子(200nm,3%)、环氧单体(4.4-二氨基二苯甲烷四缩水甘油胺(tgdom))置于50℃水浴中,使用均质器在6000rpm下搅拌15min,形成稳定的水在油中皮克林乳液;将固化剂(甲基六氢苯酐-mhhpa和聚醚胺d230,其中,环氧单体与固化剂的摩尔比为1/1)在50℃加热10min后加入到上述皮克林乳液中配制成反应乳液;反应乳液在模具中于90℃固化1h,120℃固化1h,150℃固化2h,得到泡沫复合材料。
[0056]
将所得泡沫复合材料压制、切割、粉碎后与碳酸钙颗粒、碳纤维(3-5mm)组合进行堵漏测试。
[0057]
本实施例所得泡沫复合材料在170~200℃下的橡胶态储能模量为30mpa;形状记忆转变温度为170℃,形状回复率为100%,膨胀率50%,170℃封堵裂缝承压20mpa,漏失量150ml。
[0058]
实施例3、
[0059]
与实施例1相同,不同之处在于:采用的纳米粒子为聚邻苯二酚纳米粒子(400nm,3%),环氧单体为e44和三羟甲基丙烷三缩水甘油醚(tmtge),固化剂为甲基六氢苯酐-mhhpa和聚醚胺d230,环氧单体与固化剂的摩尔比为1/0.8。
[0060]
本实施例所得泡沫复合材料在170~200℃下的橡胶态储能模量为20mpa;形状记忆转变温度为135℃,形状回复率为100%,膨胀率100%,135℃封堵裂缝承压13mpa,漏失量115ml。
[0061]
实施例4、
[0062]
将水、氧化锌纳米粒子(300nm,3%)、环氧单体(e51和三羟甲基丙烷三缩水甘油醚(tmtge))置于80℃水浴中,使用均质器在8000rpm下搅拌10min,形成稳定的水在油中皮克林乳液;将固化剂(三乙烯四胺-teta和聚醚胺d230,环氧单体与固化剂的摩尔比为1/0.86)在80℃加热10min后加入到上述皮克林乳液中配制成反应乳液;反应乳液在模具中于90℃固化2h,110℃固化2h,130℃固化2h,得到泡沫复合材料。
[0063]
将所得泡沫复合材料压制、切割、粉碎后与碳酸钙颗粒、碳纤维(3mm)组合进行堵
漏测试。
[0064]
本实施例所得泡沫复合材料在170~200℃下的橡胶态储能模量为15mpa;形状记忆转变温度为123℃,形状回复率为97%,膨胀率100%,123℃封堵裂缝承压11mpa,漏失量95ml。
[0065]
实施例5、
[0066]
与实施例1相同,不同之处在于:采用的纳米粒子为石墨烯纳米片(5~50μm,1%),环氧单体为e51,固化剂为聚醚胺d230和二氨基二苯甲烷-ddm,环氧单体与固化剂的摩尔比为1/0.36,乳液中油相/水相质量比为3/1。
[0067]
本实施例所得泡沫复合材料在170~200℃下的橡胶态储能模量为13mpa;形状记忆转变温度为115℃,形状回复率为96%,膨胀率100%,形状记忆堵漏剂5%,碳酸钙颗粒10%,115℃封堵裂缝(3
×
2mm)承压10mpa,漏失量75ml。
[0068]
实施例6、
[0069]
与实施例1相同,不同之处在于:采用的纳米粒子为聚邻苯二酚纳米粒子(200nm,3%),环氧单体为e51和蓖麻油三缩水甘油醚(coge),固化剂为聚醚胺d230和二氨基二苯甲烷-ddm,环氧单体与固化剂的摩尔比为1/0.42,乳液中油相/水相质量比为3/2。
[0070]
所得泡沫复合材料在170~200℃下的橡胶态储能模量为15mpa;形状记忆转变温度为110℃,形状回复率为97%,膨胀率100%,形状记忆堵漏剂5%,碳酸钙颗粒6%,110℃封堵裂缝(2
×
1mm)承压12mpa,漏失量125ml。
[0071]
实施例7、
[0072]
与实施例1相同,不同之处在于:采用的纳米粒子为聚邻苯二酚纳米粒子(300nm,3%),环氧单体为e51和1,3-双(缩水甘油基氧基丙基)-1,1,3,3-四甲基二硅氧烷(bgted),固化剂为聚醚胺d230和二氨基二苯甲烷-ddm,环氧单体与固化剂的摩尔比为1/0.36,乳液中油相/水相质量比为3/2。
[0073]
本实施例所得泡沫复合材料在170-200℃下的橡胶态储能模量为13mpa;形状记忆转变温度为80℃,形状回复率为97%,膨胀率100%,110℃封堵裂缝(2
×
1mm)承压10mpa,漏失量149ml。
技术特征:1.一种高温形状记忆环氧泡沫复合材料的制备方法,包括如下步骤:s1、将纳米粒子的水分散液与环氧单体混合,经搅拌得到水在油中皮克林乳液;将固化剂加入至所述皮克林乳液中形成反应乳液;s2、将所述反应乳液倒入模具中,升温固化,得到所述形状记忆环氧泡沫复合材料。2.根据权利要求1所述的制备方法,其特征在于:步骤s1中,所述纳米粒子为聚多酚纳米粒子、氧化锌纳米粒子或石墨烯纳米片;所述聚多酚纳米粒子为聚多巴胺纳米粒子、聚单宁酸纳米粒子或聚邻苯二酚纳米粒子,粒径为100~400nm;所述氧化锌纳米粒子的粒径为100~400nm;所述石墨烯纳米片的尺寸为5~50μm;所述水分散液中,所述纳米粒子的质量百分含量为1~8%。3.根据权利要求1或2所述的制备方法,其特征在于:步骤s1中,所述环氧单体为含有2~4个环氧基团的单体,为下述单体中的一种或两种:双酚a二缩水甘油醚、1,3-双(缩水甘油基氧基丙基)-1,1,3,3-四甲基二硅氧烷、三羟甲基丙烷三缩水甘油醚、蓖麻油三缩水甘油醚和4.4-二氨基二苯甲烷四缩水甘油胺。4.根据权利要求1-3中任一项所述的制备方法,其特征在于:步骤s1中,所述皮克林乳液中,油相与水相的质量比为3:1~2。5.根据权利要求1-4中任一项所述的制备方法,其特征在于:步骤s1中,所述固化剂为酸酐和/或多元胺;所述酸酐为甲基六氢苯酐;所述多元胺为三乙烯四胺、聚醚胺和二氨基二苯甲烷中至少一种;所述环氧单体与所述固化剂的摩尔比为1:0.3~1。6.根据权利要求1-5中任一项所述的制备方法,其特征在于:步骤s1中,在50~80℃水浴下、转速为6000~10000rpm、搅拌5~15min得到所述皮克林乳液;将所述固化剂在50~80℃的条件下加热5~10min后,加入至所述皮克林乳液中。7.根据权利要求1-6中任一项所述的制备方法,其特征在于:步骤s2中,所述升温固化的条件如下:在60~90℃固化1~2h,100~120℃固化1~2h,130~150℃固化2~4h。8.权利要求1-7中任一项所述方法制备的形状记忆环氧泡沫复合材料。9.一种形状记忆堵漏剂,由权利要求8所述形状记忆环氧泡沫复合材料压制形成的片材经切割、粉碎形成的颗粒状材料。10.一种形状记忆堵漏组合物,由权利要求9所述形状记忆堵漏剂、碳酸钙颗粒和纤维材料,它们的质量比为:形状记忆堵漏剂5~10,碳酸钙颗粒6~12,纤维材料0.2。
技术总结本发明公开了一种高温形状记忆泡沫复合材料及其制备方法与堵漏应用。所述复合材料的制备方法包括如下步骤:S1、将纳米粒子的水分散液与环氧单体混合,经搅拌得到水在油中皮克林乳液;将固化剂加入至皮克林乳液中形成反应乳液;S2、将反应乳液倒入模具中,升温固化得到形状记忆环氧泡沫复合材料。本发明利用皮克林乳液模板进行环氧单体和固化剂的聚合,同时结合了发泡和填料粒子增强技术,制备了兼具高转变温度、高强度和韧性以及高压缩率的形状记忆环氧泡沫复合材料。本发明高温形状记忆泡沫复合材料可满足深层、高温地层堵漏需求,将所制形状记忆泡沫复合材料作为堵漏剂,通过其在高温下的自适应膨胀,可有效实现裂缝封堵。可有效实现裂缝封堵。
技术研发人员:李中 邢希金 刘莲英 冯桓榰 吴怡 周定照 马倩 何松 谷林 秦玮
受保护的技术使用者:中海石油(中国)有限公司北京研究中心
技术研发日:2022.03.29
技术公布日:2022/7/5