1.本发明属于新材料技术领域。更具体地,涉及一种稳定的可生物降解润滑油及其制备方法。
背景技术:2.润滑油在设备运转中起着抗磨、冷却和提高效率等关键作用,但是通常与环境的相容性较差。传统的矿物油润滑油生物降解性差,若在生产、储运及使用过程中发生泄漏容易污染环境。而可生物降解润滑油既能满足机械运转的使用要求,又能在短时间内被环境中的活性微生物分解为二氧化钛和水,生态毒性小。
3.目前可生物降解的润滑油基础油由植物油和合成酯,部分聚α-烯烃和聚醚也有一定的生物降解性。植物油主要由脂肪酸甘油酯组成,具有粘度指数高、润滑性能佳、生态毒性低和生物降解性好等优点,如蓖麻油、橄榄油、蓖麻油和棕榈油,但是植物油中存在大量的不饱和键,其氧化安定性和水解安定性较差,另外,植物油中含有大量的甘油三酯结构,致使其在低温下易发生堆积作用形成较大的晶体,导致其低温流动性较差,常用植物油的组成和性质见下表1。
4.表1几种常用植物油的组成和性质
5.性质蓖麻油橄榄油大豆油棕榈油花生油葵花籽油碘值120901306090140凝点/℃0-100~100~103025-5~5倾点/℃-20~-4-6~4-18~-8
‑‑
2~3-18~-16生物降解性/%94~10089~10090~10090~10090~10090~100
6.而针对植物油目前存在的缺点和不足,主要解决方法是通过对其进行化学改性、添加剂和生物改性。如采用酯交换、氢化或环氧化对植物油进行化学改性,高植物油的氧化安定性;通过添加抗氧化剂和降凝剂抑制自由基氧化反应,可以改善植物油的氧化安定性。
7.迷迭香酸是从天然植物迷迭香酸的花和叶子中提取的具有强大的抗氧化能力的环保型抗氧化剂,分子式为c
18h16
o8,分子结构如下式2所示,目前未见将迷迭香酸用于润滑油抗氧化剂的报道。
[0008][0009]
对,对'二异辛基二苯胺(mc-01),分子式c
28h44
n,分子结构如下式1所示,其为常用的耐高温型抗氧化剂,被广泛地使用于润滑油中。
[0010][0011]
目前未见将迷迭香酸与对,对'二异辛基二苯胺复合作为润滑油抗氧化剂的报道。
技术实现要素:[0012]
本发明要解决的技术问题是克服现有现有润滑油的缺陷和不足,提供一种以迷迭香酸和对,对'二异辛基二苯胺作为抗氧化剂的稳定的可生物降解润滑油,该润滑油具有高抗氧化力和抗磨性。
[0013]
本发明上述目的通过以下技术方案实现:一种稳定的可生物降解润滑油,其包含:基础油10~80份、抗氧化剂1~7份、防锈剂0.01~2份、无灰分清净分散剂1~5份、粘度指数改进剂1~3份和降凝剂1~3份;其中所述抗氧化剂由负载迷迭香酸的改性介孔碳球纳米颗粒与对,对'二异辛基二苯胺按1:0.3~1的重量比组成。
[0014]
进一步地,所述负载迷迭香酸的改性介孔碳球纳米颗粒与对,对'二异辛基二苯胺的重量比为1:1。
[0015]
进一步地,所述负载迷迭香酸的改性介孔碳球纳米颗粒的制备方法为:
[0016]
步骤s1、将融化后的苯酚与氢氧化钠溶液混合,搅拌均匀,加入甲醛溶液,加热搅拌15~30min,得酚醛树脂;
[0017]
步骤s2、取三嵌段共聚物溶于去离子水中,加入酚醛树脂,加热至60~80℃,搅拌10~16h;升温至100~140℃反应15~30h,烘干反应液得固体粉末;将固体粉末置于惰性气氛下,700℃焙烧1~3h,得到介孔碳球纳米颗粒;
[0018]
步骤s3、将上述介孔碳球纳米颗粒分散于双氧水中,超声处理1~4h,80~100℃干燥得固体粉末,即得改性介孔碳球纳米颗粒;
[0019]
步骤s4、将迷迭香酸溶于去离子水中得迭香酸-水溶液;将改性介孔碳球纳米颗粒分散于迷迭香酸-水溶液中,超声处理10~20min,继续搅拌12~24h,离心,收集沉淀,干燥,即得负载迷迭香酸的改性介孔碳球纳米颗粒。
[0020]
进一步地,所述步骤s4中,改性介孔碳球纳米颗粒与迷迭香酸的重量比为1:1~1.5。
[0021]
本发明采用水热合成法合成了具有有序孔道结构,比表面积大的介孔碳球纳米颗粒,并通过对其表面进行氧化修饰,提高其亲水性。发明人惊人地发现,将这种经氧化修饰的介孔碳球颗粒负载迷迭香酸发挥了显著大于迷迭香酸的抗氧化作用,当将其与传统的抗氧化剂对,对'二异辛基二苯胺复合后,在润滑油中的抗氧化效力成倍地增加。
[0022]
除此之外,由于改性的介孔碳球纳米颗粒表面引入了含氧官能团,提高了纳米粒子在润滑油的悬浮稳定性,提高了迷迭香酸与润滑油体系的相容性;同时,未经氧化修饰的介孔碳球纳米颗粒疏水性很大,引入了含氧基团提高了其亲水性,有利于在介孔碳球颗粒表面负载迷迭香酸。
[0023]
除此之外,当将这种球性状的介孔碳球纳米颗粒应用到润滑油中时,由于其球结构,能够将滑动摩擦变成滚动摩擦,从而有效减少摩擦系数,发挥摩擦改进剂的作用。
[0024]
进一步地,所述基础油由蓖麻油、季戊四醇酯、聚α烯烃按照10~20:1~5:1~3的重量比组成。基础油组成对润滑油的性质起到关键的作用,上述抗氧化组合并不是在所有的基础油组成中均能发挥同样的作用,在不同的基础油中抗氧化表现不同。经多次试验筛选,在本发明限定的特定比例组成的基础油中,抗氧化效力最好。
[0025]
进一步地,所述防锈剂为t701、t702或t705。本发明基础油含有植物油蓖麻油和合成酯,植物油和合成酯容易水解生成酸性物质,这些酸性物质会与植物油和合成酯形成竞争吸附,加入防锈剂能够提高润滑油的防锈效果。
[0026]
进一步地,所述无灰分清净分散剂为t154、oloa1200、t151或t152。清净分散剂可以作为表面活性剂,利用自身的增溶、胶溶或清净分散作用抑制内燃机中燃料与润滑油造成的严重污染危害;此外,清净分散剂还能提供碱性贮备,有效中和燃料和润滑油在使用时不可避免生成的有害无机酸和有机酸,从而达到减缓油品氧化腐败,减少发动机腐蚀磨损,延长油品和发动机寿命的目的。
[0027]
进一步地,所述粘度指数改进剂为t611、t612、t614或t603。粘度指数改进剂自身为高分子量的聚合物,将这种高分子量的聚合物溶解在较小分子量的基础油中会形成线团结构,且在溶剂中的线团体积比分子量较小的润滑油大得多,因而能够使油品的粘度大于基础油的粘度,从而起到增加油品粘度和改进粘温性能。
[0028]
进一步地,所述降凝剂选自t801、t803a、t803b和t805中的一种。由于本发明以较高含量的植物油作为基础油,其低温流动性不够理想,而加入降凝剂能够降低润滑油的凝固点,有效细化蜡晶,降低冷滤点,从而进一步改善润滑油的低温流动性。
[0029]
本发明还提供一种制备所述稳定的可生物降解润滑油的方法,其包括以下步骤:
[0030]
按配方重量称取抗氧化剂、防锈剂、无灰分清净分散剂、粘度指数改进剂、降凝剂加入到基础油中,30~50℃下搅拌10~30min,混合均匀,即得。
[0031]
本发明具有以下有益效果:
[0032]
(1)本发明采用水热合成法合成了介孔碳球纳米颗粒,对其进行表面氧化修饰后负载天然抗氧化剂迷迭香酸,将其与传统的耐高温抗氧化剂对,对'二异辛基二苯胺组合,该抗氧化组合表现出惊人的抗氧化力和稳定性。
[0033]
(2)本发明还提供了一种含有上述抗氧化剂组合的润滑油,通过调整基础油的组成和比例,发现,这种抗氧化组合在特定组成及特定比例的基础油中具有很好的抗氧化效果和摩擦改进剂效果,制备得到的油品具有高抗氧化性、抗磨性,低温流动性好,且生物降解性高,可以在短时间内降解,对环境无污染。
具体实施方式
[0034]
以下结合具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
[0035]
除非特别说明,以下实施例所用试剂和材料均为市购。
[0036]
迷迭香酸-介孔碳球纳米颗粒(ra-omcn)制备
[0037]
步骤s1、将1.2g融化后的苯酚与30ml、0.1mol/l的氢氧化钠溶液混合,搅拌均匀,
加入4.2ml 37%体积分数的甲醛溶液,加热至75℃,搅拌25min,得到酚醛树脂;
[0038]
步骤s2、取1.92g三嵌段共聚物溶于30ml去离子水中得到混合液,往上述混合物中加入酚醛树脂,加热至65℃,搅拌15h;接着在120℃下反应24h,烘干反应液得固体粉末;将固体粉末置于氮气氛围下,700℃焙烧2.5h,得到介孔碳球纳米颗粒;
[0039]
步骤s3、将取上述100mg介孔碳球纳米颗粒分散于50ml双氧水中,超声处理2h,100℃干燥收集固体粉末,即得改性介孔碳球纳米颗粒;
[0040]
步骤s4、将迷迭香酸溶于去离子水中制备得到质量分数为3%的迷迭香酸-水溶液;将上述改性介孔碳球纳米颗粒分散于迷迭香酸-水溶液中,超声处理15min,继续搅拌16h,离心,收集沉淀,干燥,即得负载迷迭香酸的改性介孔碳球纳米颗粒;所述改性介孔碳球纳米颗粒与迷迭香酸的重量比为1:1.2。
[0041]
实施例1~4稳定的可生物降解润滑油(重量份数)
[0042]
原料实施例1实施例2实施例3蓖麻油606060pao461512季戊四醇酯338ra-omcn222.5mc-01222.5t7011.510.5t154312t6111.511.5t8011.512
[0043]
注:mc-01是指对,对'二异辛基二苯胺。
[0044]
按配方重量称取抗氧化剂、防锈剂、无灰分清净分散剂、粘度指数改进剂、降凝剂加入到基础油中,40℃下搅拌20min,混合均匀,即得。
[0045]
对比例1、与实施例1相比区别在于,采用迷迭香酸替换ra-omcn,其余参数与实施例1相同。
[0046]
对比例2、与实施例1相比区别在于,省略ra-omcn,其余参数与实施例1相同。
[0047]
对比例3、与实施例1相比区别在于,省略mc-01,其余参数与实施例1相同。
[0048]
抗氧化剂稳定性试验
[0049]
将实施例1~3以及对比例1~3润滑油分别装入三角瓶中,塞上瓶塞,剧烈摇动1min后,置于105
±
3℃的烘箱中恒温8h,取出三角瓶,冷却至室温;将三角瓶剧烈摇动1min后,迅速将润滑油倒入清洁的离心管中,至50ml刻度线处,将离心管放入90
±
3℃的恒温浴中加热5min,600r/min离心30min,取出离心管,观察润滑油是否出现分层、浑浊或沉淀的现象。结果如下表1所示。
[0050]
表1:
[0051]
样品稳定性试验结果实施例1无分层、浑浊或沉淀的现象实施例2无分层、浑浊或沉淀的现象实施例3无分层、浑浊或沉淀的现象
对比例1有分层、浑浊现象对比例2无分层、浑浊或沉淀的现象对比例3无分层、浑浊或沉淀的现象
[0052]
由表1可知,迷迭香酸在由蓖麻油、季戊四醇酯、聚α烯烃组成基础油中稳定性较差,而将改性介孔碳球纳米颗粒作为迷迭香酸的载体可提高其在润滑油中的稳定性。
[0053]
抗氧化安定性测定
[0054]
采用旋转氧弹法测定润滑油的氧化安定性。具体方法:将装有试样、蒸馏水和铜催化剂线圈的玻璃样器置于装有压力表的氧弹内,室温下冲入620kpa压力的氧气,放入150℃油浴中,氧弹以与水平面成30
°
角,100r/min的速度轴向旋转,当达到规定的压力降时,停止试验,记录试验时间,氧弹试验时间以min表示评价试样的氧化安定性,结果如表2所示。
[0055]
(2)取300ml试样装入试管中,将试管置于95℃的油浴中,以10
±
0.5l/h通入空气,试验进行120h,测定润滑油的酸值变化,结果如表2所示。
[0056]
表2:
[0057]
油样氧化诱导时间/min酸值变化mgkoh/g空白对照组627.3实施例18350.1实施例28120.3实施例38200.1对比例15031.4对比例23463.2对比例32575.1
[0058]
注:空白对照组不加抗氧化剂。
[0059]
分析表2可知,没有添加抗氧化剂的空白对照组油样氧化诱导时间非常短,仅为62min,且润滑油酸值变化较大;而仅添加ra-omcn或mc-01能够分别使氧化时间延长至257min和346min;添加ra-omcn+mc-01的油样氧化时间最长,达到800min以上,抗氧化能力与单剂相比成倍地增加。
[0060]
润滑油摩擦学性能测定
[0061]
采用四球试验机测定油品的抗磨损性能,方法如下:三个直径为12.7mm的钢球夹紧在油盒中,另一个同一直径的钢球置于三球的顶部,受392n力作用,成为三点接触。当润滑油达到75
±
2℃,顶球在1200
±
60r/min下旋转60min,然后测定三个钢球的磨斑直径,计算平均值,结果如表3所示。
[0062]
表3:
[0063]
油样磨斑直径/mm空白对照组1.12实施例10.35实施例20.41实施例30.44对比例10.82对比例20.96
对比例30.58
[0064]
分析表3可知,添加了介孔碳球颗粒的油样均表现出较好的抗磨性能,说明介孔碳球颗粒的存在能够提高油样的磨擦性能,降低磨擦系数。
[0065]
生物降解试验
[0066]
按照cec-l-33-a-93方法评价油样的生物降解性,参考《蔡慕颖,麻风树油基可生物降解润滑油基础油的制备及性能研究》中第二章2.2.2记载的方法进行试验,试验结果如下表4所示。
[0067]
表4:
[0068]
油样生物降解率/%实施例192.52%实施例289.39%实施例390.65%
[0069]
分析表4可知,本发明润滑油21d的生物降解率高达90%以上,具有良好的可生物降解性能。
[0070]
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
技术特征:1.一种稳定的可生物降解润滑油,其特征在于,其包含:基础油10~80份、抗氧化剂1~7份、防锈剂0.01~2份、无灰分清净分散剂1~5份、粘度指数改进剂1~3份和降凝剂1~3份;其中所述抗氧化剂由负载迷迭香酸的改性介孔碳球纳米颗粒与对,对'二异辛基二苯胺按1:0.3~1的重量比组成。2.根据权利要求1所述稳定的可生物降解润滑油,其特征在于,所述负载迷迭香酸的改性介孔碳球纳米颗粒与对,对'二异辛基二苯胺的重量比为1:1。3.根据权利要求1或2所述稳定的可生物降解润滑油,其特征在于,所述负载迷迭香酸的改性介孔碳球纳米颗粒的制备方法为:步骤s1、将融化后的苯酚与氢氧化钠溶液混合,搅拌均匀,加入甲醛溶液,加热搅拌15~30min,得酚醛树脂;步骤s2、取三嵌段共聚物溶于去离子水中,加入酚醛树脂,加热至60~80℃,搅拌10~16h;升温至100~140℃反应15~30h,烘干反应液得固体粉末;将固体粉末置于惰性气氛下,700℃焙烧1~3h,得到介孔碳球纳米颗粒;步骤s3、将上述介孔碳球纳米颗粒分散于双氧水中,超声处理1~4h,80~100℃干燥得固体粉末,即得改性介孔碳球纳米颗粒;步骤s4、将迷迭香酸溶于去离子水中得迭香酸-水溶液;将改性介孔碳球纳米颗粒分散于迷迭香酸-水溶液中,超声处理10~20min,继续搅拌12~24h,离心,收集沉淀,干燥,即得负载迷迭香酸的改性介孔碳球纳米颗粒。4.根据权利要求3所述稳定的可生物降解润滑油,其特征在于,所述步骤s4中,改性介孔碳球纳米颗粒与迷迭香酸的重量比为1:1~1.5。5.根据权利要求1或2所述稳定的可生物降解润滑油,其特征在于,所述基础油由蓖麻油、季戊四醇酯、聚α烯烃按照10~20:1~5:1~3的重量比组成。6.根据权利要求1或2所述稳定的可生物降解润滑油,其特征在于,所述防锈剂为t701、t702或t705。7.根据权利要求1或2所述稳定的可生物降解润滑油,其特征在于,所述无灰分清净分散剂为t154、oloa1200、t151或t152。8.根据权利要求1或2所述稳定的可生物降解润滑油,其特征在于,所述粘度指数改进剂为t611、t612、t614或t603。9.根据权利要求1或2所述稳定的可生物降解润滑油,其特征在于,所述降凝剂选自t801、t803a、t803b和t805中的一种。10.一种制备根据权利要求1~9任一项所述稳定的可生物降解润滑油的方法,其特征在于,包括以下步骤:按配方重量称取抗氧化剂、防锈剂、无灰分清净分散剂、粘度指数改进剂、降凝剂加入到基础油中,30~50℃下搅拌10~30min,混合均匀,即得。
技术总结本发明属于高分子材料技术领域,具体涉及一种稳定的可生物降解润滑油,其包含:基础油、抗氧化剂、防锈剂、无灰分清净分散剂、粘度指数改进剂和降凝剂;其中所述抗氧化剂由负载迷迭香酸的改性介孔碳球纳米颗粒与对,对'二异辛基二苯胺按1:0.3~1的重量比组成。本发明采用水热合成法合成了介孔碳球纳米颗粒,对其进行表面氧化修饰后负载天然抗氧化剂迷迭香酸,将其与传统的耐高温抗氧化剂对,对'二异辛基二苯胺组合,该抗氧化组合表现出惊人的抗氧化力和稳定性。发现,这种抗氧化组合在特定组成及特定比例的基础油中具有很好的抗氧化效果和摩擦改进剂的效果,制备得到的油品具有高抗氧化性、抗磨性,低温流动性好,且生物降解性高。且生物降解性高。
技术研发人员:区健才 陈健 何呈艳
受保护的技术使用者:区健才
技术研发日:2022.05.10
技术公布日:2022/7/5