感光元件基板的制作方法

allin2024-04-21  12



1.本发明涉及一种感测基板,且特别涉及一种感光元件基板。


背景技术:

2.光传感器的应用非常广泛。较常见的有数字相机或摄影机所使用的影像传感器,例如互补式金属氧化物半导体(complementary metal-oxide-semiconductor,cmos)影像传感器或电荷耦合元件(charge-coupled device,ccd)。除此之外,用于安检、工业检测或医疗诊察的非可见光(例如x射线)传感器,因其高附加价值而成为相关制造商的重点开发项目。
3.一般来说,用于医疗检测或手术用的x射线传感器须具备较高的感测频率才能让医疗人员从中取得病患体内的即时状态,来增加检测的准确率和手术的成功率。因此,这类传感器大都使用具有高电子迁移率(high electron mobility)的薄膜晶体管来作为开关元件。其中,金属氧化物半导体晶体管因具有较低的漏电流和噪声而受到青睐。然而,在制作工艺中,金属氧化物半导体层的操作电性,例如电流-电压曲线(i-v curve),容易受到后续制作工艺的反应气体影响而改变,造成后续形成的晶体管的电性不良。


技术实现要素:

4.本发明提供一种具有高感测频率的感光元件基板,其操作电性和稳定性都较佳。
5.本发明的感光元件基板,包括基板、主动(有源)元件以及感光元件。主动元件和感光元件设置在基板上。主动元件具有半导体图案和栅极。半导体图案设置在基板与栅极之间。感光元件电连接主动元件。感光元件具有光电转换层以及设置在光电转换层的相对两侧的第一电极和第二电极。第一电极位于光电转换层与半导体图案之间,且第一电极的材料包括金属氧化物。
6.基于上述,在本发明的一实施例的感光元件基板中,感光元件在较靠近主动元件一侧的第一电极可采用金属氧化物来制作,使其可有效阻挡光电转换层的制作工艺气体渗透至主动元件的半导体图案而影响先形成的主动元件的操作电性和稳定性。
附图说明
7.图1是本发明的第一实施例的感光元件基板的剖视示意图;
8.图2是本发明的第二实施例的感光元件基板的剖视示意图;
9.图3是本发明的第三实施例的感光元件基板的剖视示意图;
10.图4是本发明的第四实施例的感光元件基板的剖视示意图。
11.符号说明
12.10、11、12、13:感光元件基板
13.100:基板
14.110:栅绝缘层
15.120:层间绝缘层
16.130、130a、130b、130c、140、161、162:绝缘层
17.130a、130b、op:开口
18.150:平坦层
19.171、173:导电图案
20.ch:沟道区
21.de:漏极
22.dr:漏极区
23.e1、e1a、e1b、e1c:第一电极
24.e1a:金属氧化物导电图案
25.e1b:金属导电图案
26.e2:第二电极
27.ge:栅极
28.pcl:光电转换层
29.pd、pd-a、pd-b、pd-c:感光元件
30.re:反射式电极
31.sc:半导体图案
32.se:源极
33.sp:牺牲图案
34.sr:源极区
35.t:主动元件
36.th、th”:接触孔
具体实施方式
37.本文使用的「约」、「近似」、「本质上」、或「实质上」包括所述值和在本领域普通技术人员确定的特定值的可接受的偏差范围内的平均值,考虑到所讨论的测量和与测量相关的误差的特定数量(即,测量系统的限制)。例如,「约」可以表示在所述值的一个或多个标准偏差内,或例如
±
30%、
±
20%、
±
15%、
±
10%、
±
5%内。再者,本文使用的「约」、「近似」、「本质上」、或「实质上」可依测量性质、切割性质或其它性质,来选择较可接受的偏差范围或标准偏差,而可不用一个标准偏差适用全部性质。
38.在附图中,为了清楚起见,放大了层、膜、面板、区域等的厚度。应当理解,当诸如层、膜、区域或基板的元件被称为在另一元件「上」或「连接到」另一元件时,其可以直接在另一元件上或与另一元件连接,或者中间元件可以也存在。相反,当元件被称为「直接在另一元件上」或「直接连接到」另一元件时,不存在中间元件。如本文所使用的,「连接」可以指物理及/或电连接。再者,「电连接」可为两元件间存在其它元件。
39.现将详细地参考本发明的示范性实施方式,示范性实施方式的实例说明于所附附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。
40.图1是依照本发明的第一实施例的感光元件基板的剖视示意图。请参照图1,感光元件基板10包括基板100、主动元件t和感光元件pd。主动元件t和感光元件pd设置在基板
100上,且彼此电连接。需说明的是,虽然附图未绘示,但本实施例的感光元件pd和主动元件t的数量可以分别是多个,且阵列排列于基板100上。
41.在本实施例中,形成主动元件t的方法可包括以下步骤:在基板100上依序形成半导体图案sc、栅绝缘层110、栅极ge、层间绝缘层120、源极se和漏极de,其中半导体图案sc具有沟道区ch、源极区sr和漏极区dr,且源极se和漏极de贯穿层间绝缘层120以分别电连接半导体图案sc的源极区sr和漏极区dr。在本实施例中,主动元件t的栅极ge可选择性地配置在半导体图案sc的上方(即半导体图案sc设置在栅极ge与基板100之间),以形成顶部栅极型薄膜晶体管(top-gate tft),但本发明不以此为限。根据其他的实施例,主动元件的栅极ge也可配置在半导体图案sc的下方,以形成底部栅极型薄膜晶体管(bottom-gate tft)。
42.半导体图案sc的材料例如是铟镓锌氧化物(igzo)、或其他具有高电子迁移率(high electron mobility)的金属氧化物。也就是说,主动元件t例如是金属氧化物薄膜晶体管(metal-oxide thin film transistor)。需说明的是,栅极ge、源极se、漏极de、栅绝缘层110和层间绝缘层120分别可由任何所属技术领域中普通技术人员所周知的用于显示面板的任一栅极、任一源极、任一漏极、任一层间绝缘层及任一栅绝缘层来实现,且栅极ge、源极se、漏极de、栅绝缘层110和层间绝缘层120分别可通过任何所属技术领域中普通技术人员所周知的任一方法来形成,故于此不加以赘述。
43.由于本实施例的主动元件t是采用具有高电子迁移率的半导体材料,感光元件基板10可应用在医疗用的x射线(x-ray)感测面板上。举例来说,x射线感测面板可包括感光元件基板10和波长转换层,波长转换层设置在感光元件基板10的收光侧,并且重叠于多个感光元件pd。此处的波长转换层的材料例如是碘化铯(cesium iodide,csi),其在吸收入射的x射线后会发出可见光(例如绿光),而感光元件pd适于接收该可见光并产生相对应的电信号。
44.进一步而言,形成感光元件pd的方法可包括以下步骤:在主动元件t上依序形成绝缘层130、第一电极e1、光电转换层pcl和第二电极e2。在本实施例中,绝缘层130的材料可选自无机材料(例如氧化硅、氮化硅、氮氧化硅、其它合适的材料或上述至少两种材料的堆叠层)。第一电极e1的材料包括金属氧化物,例如是铟镓锌氧化物(igzo)。第二电极e2的材料包括透明导电材料,例如是铟锡氧化物(ito)或铟锌氧化物(izo)。
45.光电转换层pcl例如是由p型掺杂层、本质层及n型掺杂层堆叠形成的pin结结构,但不以此为限。在其他实施例中,光电转换层pcl也可以是由p型掺杂层及n型掺杂层堆叠形成的pn结结构,或者是,由pn结结构与pin结结构重复排列的串叠结构。
46.特别说明的是,在本实施例中,光电转换层pcl的材料例如是氢化非晶硅(a-si:h)。由于氢化非晶硅的沉积制作工艺中会使用硅甲烷(sih4)和氢气(h2)这类容易渗透其他膜层的反应气体,且在后续的第二电极e2的退火制作工艺中,氢化非晶硅材料层中的氢原子也容易扩散至其他的膜层,例如先形成的半导体图案sc,造成先形成的主动元件t的操作电性受到影响。
47.为了有效阻挡氢气的渗透或氢原子的扩散,位于光电转换层pcl与半导体图案sc之间的第一电极e1的材料可选用金属氧化物(例如铟镓锌氧化物)来制作。特别说明的是,铟镓锌氧化物在吸收氢元素后,其导电性会增加。因此,选用铟镓锌氧化物来制作第一电极e1,除了能有效阻挡光电转换层pcl的氢元素扩散至半导体图案sc,还能满足第一电极e1的
导电性需求。
48.另一方面,设置在半导体图案sc上方的栅极ge的材料也可选用铟镓锌氧化物来制作。因此,可进一步阻挡氢气在光电转换层pcl的沉积制作工艺中渗透至半导体图案sc而影响主动元件t的操作电性。
49.在本实施例中,感光元件基板10还可选择性地包括反射式电极re,设置在第一电极e1与主动元件t之间,并且沿着垂直于基板100的方向重叠于光电转换层pcl。反射式电极re电连接于第一电极e1与主动元件t的源极se之间。举例来说,反射式电极re、源极se和漏极de可属于同一膜层,但不以此为限。反射式电极re的材料例如是金属、合金、金属材料的氮化物、金属材料的氧化物、金属材料的氮氧化物、或其他具有高反射率的导电材料、或是金属材料与其他导电材料的堆叠层。
50.详细而言,绝缘层130具有重叠于反射式电极re的开口130a,感光元件pd的第一电极e1设置在此开口130a内,并且与反射式电极re直接接触。特别注意的是,第一电极e1与反射式电极re的接触面积大于第一电极e1与光电转换层pcl的接触面积。据此,除了可增加感光元件pd的光电转换效率外,还能提升感光元件pd的第一电极e1与主动元件t的源极se之间的导电性。
51.进一步而言,感光元件基板10还包括绝缘层140、平坦层150、绝缘层161、绝缘层162和金属导电层。绝缘层140和平坦层150依序覆盖感光元件pd和绝缘层130,且具有重叠于感光元件pd的开口op。绝缘层161、金属导电层和绝缘层162依序设置在平坦层150上。在本实施例中,金属导电层可包括导电图案171和导电图案173。导电图案171延伸入平坦层150和绝缘层140的开口op,并且与感光元件pd的第二电极e2电连接。导电图案173贯穿绝缘层161、平坦层150、绝缘层140和绝缘层130以电连接主动元件t的漏极de。
52.举例来说,导电图案171和导电图案173可电连接不同的信号线以分别传输感光元件pd所需的偏压信号和感光元件pd接收光线后所产生的电信号,但不以此为限。需说明的是,本发明并不加以局限金属导电层与绝缘层的数量。在其他实施例中,金属导电层与绝缘层的数量当可根据实际的电路设计需求而调整。
53.在本实施例中,绝缘层140、平坦层150、绝缘层161、绝缘层162的材料可选自无机材料(例如氧化硅、氮化硅、氮氧化硅、其它合适的材料或上述至少两种材料的堆叠层)。平坦层150的材料可选自氧化硅、氮化硅、氧化铝、氮氧化硅、其它合适的材料。有机材料层的材料可选自聚乙烯吡咯烷酮(poly(vinyl pyrrolidone),pvp)、聚乙烯醇(polyvinyl alcohol,pva)、聚甲基丙烯酸甲酯(poly(methyl methacrylate),pmma)、乙烯四氟乙烯共聚物(ethylene-tetrafluoroethylene,etfe)、氟化乙烯丙烯共聚物(fluorinated ethylene propylene,fep)、聚偏二氟乙烯共聚物(poly(vinylidene fluoride),pvdf)、聚氟乙烯共聚物(polyvinyl fluoride,pvf)、乙烯-氯代三氟乙烯共聚物(ethylene chlorotrifluoroethylene,ectfe)、聚四氟乙烯(polytetrafluoroethylene,ptfe)、过氟烷氧基化物(pfa,perfluoro(alkoxy alkane))或其他氟系材料。
54.以下将列举另一些实施例以详细说明本发明,其中相同的构件将标示相同的符号,并且省略相同技术内容的说明,省略部分请参考前述实施例,以下不再赘述。
55.图2是依照本发明的第二实施例的感光元件基板的剖视示意图。请参照图2,本实施例的感光元件基板11与图1的感光元件基板10的差异在于:感光元件的第一电极的配置
方式不同。具体而言,感光元件基板11的绝缘层130a不具有图1的开口130a,而是具有不重叠于光电转换层pcl的一接触孔th。此接触孔th位于光电转换层pcl与主动元件t之间。在本实施例中,感光元件pd-a的第一电极e1a是经由上述的接触孔th与反射式电极re(或源极se)电连接。
56.由于本实施例的第一电极e1a的材料选用及其所产生的技术效果相似于图1的第一电极e1,详细的说明请参见前述实施例的相关段落,于此便不再赘述。
57.图3是依照本发明的第三实施例的感光元件基板的剖视示意图。请参照图3,本实施例的感光元件基板12与图2的感光元件基板11的主要差异在于:感光元件基板12还可选择性地包括牺牲图案sp。在本实施例中,牺牲图案sp沿着垂直于基板100的方向重叠于主动元件t的半导体图案sc和栅极ge。半导体图案sc和栅极ge位于基板100与牺牲图案sp之间。
58.特别注意的是,牺牲图案sp与感光元件pd-b的第一电极e1b可以是同一膜层。也就是说,牺牲图案sp与第一电极e1b的材料可选择性地相同。例如:牺牲图案sp也可同第一电极e1b选用铟镓锌氧化物来制作。因此,可进一步阻挡氢气在光电转换层pcl的沉积制作工艺中渗透至半导体图案sc而影响主动元件t的操作电性。
59.另一方面,牺牲图案sp与第一电极e1b彼此电性独立。例如:牺牲图案sp可具有一浮置(floating)电位。为了避免第一电极e1b与牺牲图案sp电性短路,本实施例的绝缘层130b的接触孔th”可改设置在感光元件pd-b远离牺牲图案sp的一侧并且不重叠于光电转换层pcl的位置,但不以此为限。
60.图4是依照本发明的第四实施例的感光元件基板的剖视示意图。请参照图4,本实施例的感光元件基板13与图2的感光元件基板11的主要差异在于:感光元件基板13的感光元件pd-c的第一电极e1c为金属氧化物导电图案e1a和金属导电图案e1b的堆叠结构,且金属氧化物导电图案e1a设置在金属导电图案e1b与光电转换层pcl之间。相似于图2的第一电极e1a,本实施例的第一电极e1c可经由绝缘层130c的开口130b与主动元件t的源极se电连接。
61.举例来说,金属氧化物导电图案e1a和金属导电图案e1b可分别选用铟镓锌氧化物和钼金属来制作。较佳地,金属氧化物导电图案e1a和金属导电图案e1b各自的膜厚可大于30nm。由于金属导电图案e1b是选用钼金属而非合金来制作,除了可增加第一电极e1c整体的导电性外,还能进一步阻挡光电转换层pcl的氢元素扩散至半导体图案sc。
62.此外,由于本实施例的金属导电图案e1b具有光反射的特性,感光元件基板13可省去图2的反射式电极re的设置。在本实施例中,金属氧化物导电图案e1a与金属导电图案e1b可在同一图案化制作工艺(例如光刻蚀刻制作工艺)中形成。亦即,金属氧化物导电图案e1a与金属导电图案e1b可使用同一光掩模来进行曝光显影。据此,本实施例的感光元件基板13可具有较简化的生产制作工艺。
63.综上所述,在本发明的一实施例的感光元件基板中,感光元件在较靠近主动元件一侧的第一电极可采用金属氧化物来制作,使其可有效阻挡光电转换层的制作工艺气体渗透至主动元件的半导体图案而影响先形成的主动元件的操作电性和稳定性。

技术特征:
1.一种感光元件基板,包括:基板;主动元件,设置在该基板上,且具有半导体图案和栅极,该半导体图案设置在该基板与该栅极之间;以及感光元件,设置在该基板上,且电连接该主动元件,该感光元件具有光电转换层以及设置在该光电转换层的相对两侧的第一电极和第二电极,其中该第一电极位于该光电转换层与该半导体图案之间,且该第一电极的材料包括金属氧化物。2.如权利要求1所述的感光元件基板,其中该半导体图案的材料包括铟镓锌氧化物。3.如权利要求1所述的感光元件基板,其中该第一电极的材料包括铟镓锌氧化物。4.如权利要求1所述的感光元件基板,其中该光电转换层的材料包括氢化非晶硅(a-si:h)。5.如权利要求1所述的感光元件基板,其中该栅极的材料包括铟镓锌氧化物。6.如权利要求1所述的感光元件基板,还包括:反射式电极,设置在该第一电极与该主动元件之间,且重叠于该光电转换层,该反射式电极电连接于该第一电极与该主动元件的源极之间。7.如权利要求6所述的感光元件基板,其中该第一电极与该反射式电极的接触面积大于该第一电极与该光电转换层的接触面积。8.如权利要求1所述的感光元件基板,还包括:牺牲图案,重叠设置于该主动元件的该栅极和该半导体图案,其中该半导体图案和该栅极位于该基板与该牺牲图案之间,且该牺牲图案的材料包括金属氧化物。9.如权利要求8所述的感光元件基板,其中该牺牲图案的材料包括铟镓锌氧化物。10.如权利要求8所述的感光元件基板,其中该牺牲图案与该第一电极为同一膜层,且彼此电性独立。11.如权利要求8所述的感光元件基板,其中该牺牲图案具有浮置电位。12.如权利要求1所述的感光元件基板,其中该第一电极为金属导电图案和金属氧化物导电图案的堆叠结构,该金属氧化物导电图案设置在该金属导电图案与该光电转换层之间。13.如权利要求12所述的感光元件基板,其中该金属导电图案的材料为钼金属。

技术总结
本发明公开一种感光元件基板,该感光元件基板包括基板、主动元件以及感光元件。主动元件和感光元件设置在基板上。主动元件具有半导体图案和栅极。半导体图案设置在基板与栅极之间。感光元件电连接主动元件。感光元件具有光电转换层以及设置在光电转换层的相对两侧的第一电极和第二电极。第一电极位于光电转换层与半导体图案之间,且第一电极的材料包括金属氧化物。氧化物。氧化物。


技术研发人员:蔡佳修 张家铭 陈瑞沛
受保护的技术使用者:友达光电股份有限公司
技术研发日:2022.04.07
技术公布日:2022/7/5
转载请注明原文地址: https://www.8miu.com/read-13463.html

最新回复(0)