一种质量分析器系统及质谱仪的制作方法

allin2024-05-13  88



1.本发明属于分析技术领域,具体涉及一种质量分析器系统、以及包括该质量分析器系统的质谱仪。


背景技术:

2.热电离质谱技术(tims)是20世纪70年代发展起来的元素同位素丰度、同位素丰度比精确测量的分析测试技术,与其他分析技术相比,热电离质谱技术具有准确度高、精度高等优点,热电离质谱仪已广泛应用于核工业、环境、地质、考古等领域。
3.质量分析器系统是不同质荷比的离子进行质量分离的场所,是热电离质谱仪重要的组成部分,直接决定了热电离质谱仪的灵敏度、质量分辨率、质量色散、像差等参数,影响热电离质谱仪的实际分析水平。
4.目前,全世界范围内的热电离质谱仪生产厂商主要有赛默飞世尔(thermo fisher)、阿美特克(ametek)、以及英国同位素质谱公司(isotopx)三家,这三家生产的热电离质谱仪的质量分析器系统均有其独特的离子光学设计,虽然都能够实现质谱分析目的,但是存在占地空间大、重量大,不利于布置的问题。此外,这些热电离质谱仪还存在着能耗高、分辨率偏低等不足。


技术实现要素:

5.本发明要解决的技术问题是针对现有技术存在的以上不足,提供一种质量分析器系统及质谱仪,具有布局紧凑、占地空间小等优点。
6.本发明解决上述技术问题的技术方案是:
7.根据本发明的一个方面,提供一种质量分析器系统,其包括离子透镜组、分析电磁铁、以及检测器,所述离子透镜组、所述分析电磁铁、以及所述检测器采用非对称结构,离子透镜组与分析电磁铁之间的间距小于分析电磁铁与检测器之间的间距,且分析电磁铁的磁场中心偏转半径为200-220mm,离子透镜组输出的离子进入分析电磁铁的入射角小于分析电磁铁输出的离子的出射角。
8.优选的是,所述离子透镜组与所述分析电磁铁的间距为450-480mm,所述分析电磁铁与所述检测器之间的间距为570-600mm,分析电磁铁的入射角为27-30
°
,所述分析电磁铁的出射角为29-32
°

9.优选的是,所述离子透镜组包括加速极透镜、引出极透镜、聚焦透镜、聚焦极x透镜、聚焦极z透镜、离子源出口狭缝、输出透镜、以及高压电源连接器,所述加速极透镜、所述引出极透镜、所述聚焦透镜、所述聚焦极x透镜、所述聚焦极z透镜、所述离子源出口狭缝、以及所述输出透镜按顺序依次排列,输出透镜处于靠近所述分析电磁铁的位置;所述高压电源连接器与所述加速极透镜、所述引出极透镜、所述聚焦透镜、所述聚焦极x透镜、所述聚焦极z透镜、以及所述输出透镜分别电连接,以用于提供电压。
10.优选的是,所述高压电源连接器的电压为10kv以下,所述离子源出口狭缝的宽度
为0.2mm。
11.优选的是,所述高压电源连接器包括多个供电模块,分别为第一模块、第二模块、第三模块、第四模块、第五模块、以及第六模块,其中:
12.所述第一模块与所述加速极透镜电连接,用于向加速极透镜提供的电压范围为9900
±
100v;
13.所述第二模块与所述引出极透镜电连接,用于向引出极透镜提供的电压范围为8600
±
300v;
14.所述第三模块与所述聚焦透镜电连接,用于向聚焦透镜提供的电压范围为9000
±
100v;
15.所述第四模块与所述聚焦极x透镜电连接,用于向聚焦极x透镜提供的电压范围为5000
±
100v;
16.所述第五模块与所述聚焦极z透镜电连接,用于向聚焦极z透镜提供的电压范围为450
±
250v;
17.所述第六模块与所述输出透镜电连接,用于向输出透镜提供的电压范围为1500
±
250v。
18.优选的是,所述分析电磁铁包括磁轭、极靴、磁极线圈、以及磁感应稳定线圈,所述极靴设于所述磁轭内,所述磁极线圈和所述磁感应稳定线圈套设于所述极靴上,且磁感应稳定线圈处于靠近极靴间隙的一端,磁极线圈用于产生磁场,磁感应稳定线圈用于对磁极线圈产生的磁场进行补偿。
19.优选的是,所述极靴的间隙为12-15mm,所述磁极线圈和所述磁感应稳定线圈均采用电流密度小于2a/mm2的低阻值漆包线绕制。
20.优选的是,所述检测器中的法拉第杯的数量为八个以上,各个法拉第杯按顺序依次排成一列,以形成聚焦平面,其中,处于最中间位置的法拉第杯的位置固定,其余的法拉第杯的位置能够沿聚焦平面方向移动。
21.优选的是,所述聚焦平面与所述分析电磁铁的离子传输主光轴之间的夹角为20-30
°
,所述法拉第杯的接收狭缝宽度为0.8-1.0mm。
22.优选的是,本系统还包括第二聚焦透镜和变焦透镜,所述第二聚焦透镜设于所述离子透镜组与所述分析电磁铁之间,用于优化离子透镜组输出的离子束的聚焦效果;所述变焦透镜设于所述分析电磁铁与所述检测器之间,用于改善色散距离。
23.根据本发明的另一个方面,还提供一种质谱仪,所述质谱仪包括以上所述的质量分析器系统。
24.本发明的质量分析器系统及质谱仪,通过采用非对称离子光学设计,可以减少分析电磁铁的中心轨道半径、离子透镜组与分析电磁铁之间的间距、分析电磁铁与检测器之间的间距等相关参数,使整个系统的结构布局紧凑,从而可以有效减少系统的整体尺寸、重量。此外,通过对离子透镜组、分析电磁铁、以及检测器的结构组成及参数进行改进,不仅可以提高分辨率(大于500)、离子传输效率(90%以上)等性能,实现质量数范围3-280amu全质量数的同位素分析,还可以降低耗电量,实现环保节能;通过设置第二聚焦透镜可以在离子进入分析电磁铁之前对其进行进一步的做x方向和y方向的聚焦,通过设置变焦透镜,可以对经过分析电磁铁质量分离后的离子的质量色散距离做进一步调整,从而提高检测器的接
收效率。
附图说明
25.图1为本发明实施例中质量分析器系统的结构示意图;
26.图2为本发明实施例中离子透镜组的结构示意图;
27.图3为本发明实施例中输出透镜的结构示意图;
28.图4为本发明实施例中分析电磁铁的结构示意图;
29.图5为本发明实施例中分析电磁铁的分解示意图;
30.图6为本发明实施例中检测器的结构示意图;
31.图7为本发明实施例中另一种质量分析器系统的结构示意图;
32.图8为本发明实施例中第二聚焦透镜的结构示意图;
33.图9为本发明实施例中第二聚焦透镜的剖视图。
34.图中:1-离子透镜组;2-分析电磁铁;3-检测器;10-加速极透镜;11-引出极透镜;12-聚焦透镜;13-聚焦极x透镜;14-聚焦极z透镜;15-离子源出口狭缝;16-输出透镜;20-磁轭;21-极靴;22-磁感应稳定线圈;23-磁极线圈;24-移动装置;30-法拉第杯;31-二次电子倍增器;32-偏转电极;33-高压连接器;41-第二极杆;161-第一电极;162-第二电极;163-第三电极;164-第四电极。
具体实施方式
35.为使本领域技术人员更好的理解本发明的技术方案,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
36.在本发明的描述中,需要说明的是,属于“上”等指示方位或位置关系是基于附图所示的方位或者位置关系,仅是为了便于和简化描述,而并不是指示或者暗示所指的装置或者元件必须设有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
37.在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或者暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
38.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”、“设置”、“安装”、“固定”等应做广义理解,例如可以是固定连接也可以是可拆卸地连接,或者一体地连接;可以是直接相连,也可以是通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
39.实施例1
40.如图1所示,本实施例公开一种质量分析器系统,可用于热电离质谱仪(tims)、多接收电感耦合等离子质谱仪(mc-icp-ms)等,其包括离子透镜组1、分析电磁铁2、以及检测器3,其中,离子透镜组1、分析电磁铁2、以及检测器3采用非对称结构,离子透镜组1与分析
电磁铁2之间的间距小于分析电磁铁2与检测器3之间的间距,且分析电磁铁2的磁场中心偏转半径为200-220mm,离子透镜组1输出的离子进入分析电磁铁的入射角小于分析电磁铁输出的离子的出射角。
41.具体来说,离子透镜组1用于对离子进行调整、聚焦,分析电磁铁2用于提供强度稳定、可调的磁场,检测器3用于测量离子束流强度。离子透镜组1与分析电磁铁2之间的间距范围为450-480mm,分析电磁铁2与检测器3之间的间距范围为570-600mm。离子透镜组1输出的离子进入分析电磁铁的入射角范围为27-30
°
,分析电磁铁输出的离子的出射角范围为29-32
°

42.质量分析器系统的原理如下:利用匀强磁场根据进入分析电磁铁的不同质量的离子所受的洛伦兹力的不同,将质荷比m/e按大小进行空间分离;
43.根据离子在电场中的加速方程和在磁场中的洛伦兹力方程:
[0044][0045]
则离子质荷比为:
[0046]
其中,q表示离子带的电荷数,u0表示加速电压,m表示离子的质量,b表示磁场强度,v表示离子的速度,rm表示磁场中心偏转半径;
[0047]
当加速电压u0和磁场强度b调节到合适值后,不同质荷比(m/q)的离子实现不同的偏转半径,进而到达不同的法拉第杯,由检测器完成离子束流强度的测量。
[0048]
本实施例中,离子透镜组1与分析电磁铁2之间的间距优选为430mm,分析电磁铁2与检测器3之间的间距优选为580mm,离子透镜组输出的离子分析电磁铁的入射角优选为28
°
,分析电磁铁输出的离子的出射角优选为30
°

[0049]
相比于现有技术,本实施例中的离子透镜组1中增加了输出透镜16,也就是说,如图2所示,离子透镜组1包括加速极透镜10、引出极透镜11、聚焦透镜12、聚焦极x透镜13、聚焦极z透镜14、离子源出口狭缝15、输出透镜16、以及高压电源连接器,其中:加速极透镜10、引出极透镜11、聚焦透镜12、聚焦极x透镜13、聚焦极z透镜14、离子源出口狭缝15、以及输出透镜16按顺序依次平行排列,输出透镜16处于靠近分析电磁铁2的位置;高压电源连接器与加速极透镜10、引出极透镜11、聚焦透镜12、聚焦极x透镜13、聚焦极z透镜14、以及输出透镜16分别电连接,以用于为前述这些透镜提供电压。
[0050]
具体来说,离子源出口狭缝15的宽度可以为0.2-0.3mm,优选为0.2mm,离子源出口狭缝15与分析电磁铁2之间的间距可以为420-440mm,优选为430mm。输出透镜16通过不锈钢支撑杆、定位陶瓷、紧固螺栓等部件与离子源出口狭缝15相连,输出透镜可以在离子束进入分析电磁铁中的磁场前对其进行调整校正,以提高离子传输效率(90%以上)。
[0051]
高压电源连接器可提供的电压的范围优选为0-10kv,也就是说,高压电源连接器的电压为10kv以下,或者说,高压电源连接器的最大电压为10kv,离子透镜组的最大离子加速电压为10kv,具体可根据实际需求进行调整。
[0052]
本实施例中,高压电源连接器包括多个模块,分别为第一模块、第二模块、第三模块、第四模块、第五模块、以及第六模块(图中未示出),其中:第一模块与加速极透镜10电连接,用于向加速极透镜提供的电压的范围为9900
±
100v,优选的电压为9900v;第二模块与
引出极透镜11电连接,用于向引出极透镜提供的电压的范围为8600
±
300v电压,优选的电压为8600v;第三模块与聚焦透镜12电连接,用于向聚焦透镜提供的电压的范围为9000
±
100v,优选的电压为9000v;第四模块与聚焦极x透镜13电连接,用于向聚焦极x透镜提供的电压的范围为5000
±
100v,优选的电压为5000v;第五模块与聚焦极z透镜14电连接,用于向聚焦极z透镜提供的电压的范围为450
±
250v,优选的电压为450v;第六模块与输出透镜16电连接,用于向输出透镜提供的电压的范围为1500
±
250v,优选的电压为1500v。通过设置多个模块分别向加速极透镜10、引出极透镜11、聚焦透镜12、聚焦极x透镜13、聚焦极z透镜14、以及输出透镜16提供电压,可以有利于离子束得到最佳聚焦和传输效果。
[0053]
本实施例中,如图3所示,输出透镜16包括四片电极,分别为第一电极161、第二电极162、第三电极163、以及第四电极164,其中,第一电极161与第二电极162为一组,两者相对并处于第一方向上,第一电极161与第二电极162之间的电压优选为0-190v;第三电极163与第四电极164为另一组,两者相对并处于第二方向上,且第二方向与第一方向垂直,第三电极163与第四电极164之间的电压优选为0-190v。
[0054]
相比于现有技术,本实施例的分析电磁铁2增加了磁感应稳定线圈22。如图4、图5所示,本实施例中分析电磁铁2包括磁轭20、极靴21、磁极线圈23、磁铁电源、以及磁感应稳定线圈22,其中:极靴21设于磁轭20内,磁极线圈23和磁感应稳定线圈22套设于极靴21上,且磁感应稳定线圈22处于靠近极靴间隙的一端,磁极线圈23用于产生磁场;磁感应稳定线圈22用于对磁极线圈23产生的磁场再起调节过程中进行小幅度的补偿,以提高磁场稳定性;磁铁电源与磁极线圈23分别相连,用于为磁极线圈提供稳定可调的电流。
[0055]
具体来说,分析电磁铁2的磁场中心偏转半径(又称为“中心轨道半径”)可以为200-220mm,优选为200mm,相比于现有技术(260mm以上),磁场中心偏转半径明显减小,有利于减轻分析电磁铁的重量。磁轭20和极靴21的材质优选为dt4纯铁。分析电磁铁2中的极靴的间隙(即气隙)可以为12-15mm,优选为14mm。离子透射电镜输出的离子进入分析电磁铁2的入射角优选为28
°
,分析电磁铁2输出的离子的出射角优选为30
°
。分析电磁铁2中的出射面极头采用圆弧面设计,且该圆弧面的半径r可以为600-700mm,优选为665mm,以提高离子聚焦效果。
[0056]
磁极线圈23和磁感应稳定线圈22均优选采用电流密度小于2a/mm2的低阻值漆包线绕制,这样减少绕组发热,相比于现有技术,可不需要配备冷却水机,从而减少仪器耗电。磁极线圈23和磁感应稳定线圈22的数量均为两个,两种线圈自身均为并联连接。磁铁电源采用常规的标准部件设计,其对磁极线圈23的输出电流优选为0.2-16a,磁极线圈23产生的磁场的均匀性小于50ppm。
[0057]
通过上述设置,分析电磁铁2的放大倍数(m)可达到1.5,精度高;可实现磁场强度0-1.24t之间连续稳定可调;可满足3-280amu全质量数范围元素的丰度和丰度比的精确测量。
[0058]
并且,分析电磁铁的底部可设有移动装置24,通过移动装置的带动,以实现对分析电磁铁在水平和竖直方向上的调平。
[0059]
本实施例中,移动装置24包括水平调节单元和竖直调节单元(图中未示出),其中:水平调节单元可以包括水平导轨,分析电磁铁设于水平导轨上,可沿水平导轨滑动,以调节分析电磁铁在水平方向的位置;竖直调节单元也可采用与水平调节单元相同或相似的结
构,这里不再赘述,以调节分析电磁铁在水平方向的位置。
[0060]
与现有技术相比,如图6所示,本实施例中的检测器也包括法拉第杯30、二次电子倍增器31、以及偏转电极32、高压连接器33、检测器外壳(图中未示出)等部件,检测器外壳的内部空腔为真空状态,法拉第杯30、二次电子倍增器31、以及偏转电极32、高压连接器33设于检测器外壳内,其接线方式与现有技术相同,这里不再赘述,区别在于:
[0061]
二次电子倍增器21的增益倍数为106,法拉第杯20的放大器高阻阻值为10
11
ω,这样可以在确保性能要求的前提下尽可能的减小检测器外壳内的真空腔体的尺寸(真空腔体的直径可达到300mm左右),从而降低耗电。
[0062]
二次电子倍增器31的数量可以为一个,也可以为多个,并且,可采用市售的戴利检测器。法拉第杯30的数量为多个,比如,8个以上,各个法拉第杯30按顺序依次排成一列,各个法拉第杯的接收狭缝的朝向一致,以形成聚焦平面,其中,处于最中间顺序的法拉第杯30的位置固定,具体来说,当法拉第杯的30数量为奇数时,则处于中间顺序的那个法拉第杯的位置固定,当法拉第杯30的数量为偶数时,则处于中间顺序的那两个法拉第杯30中的任意一个的位置固定,比如法拉第杯30的数量为8时,则第四个和/或第五个法拉第杯的位置固定,其余的法拉第杯30的位置能够沿聚焦平面方向移动,以根据分析的元素的不同来调整各个法拉第杯的位置,从而保证灵敏度和精度。
[0063]
法拉第杯30的结构采用常规结构,其由接收狭缝、抑制极、绝缘块、以及外壳组成,整体呈矩形盒状,法拉第杯的一侧打开,用于接收离子束,其余侧均为密封状。
[0064]
本实施例中,法拉第杯30的接收狭缝宽度优选为0.8-1.0mm;除了最中间位置(如,当法拉第杯的数量为八个时,最中间位置指第四个法拉第杯和/或第五个法拉第杯)的以外的各个其余的法拉第杯30的位置的移动范围优选为0-44mm;法拉第杯30的尺寸优选为12
×2×
1mm;法拉第杯30的材质可以为不锈钢材质,也可以为高纯石墨材质,单个法拉第杯30的调节精度可以为10μm,调节方式可采用步进电机调节,也可以采用蜗轮蜗杆导轨手动调节;各个法拉第杯30排列形成的聚焦平面与分析电磁铁2的离子传输主光轴之间的夹角可以为20-30
°
,优选为25
°

[0065]
通过上述设置,当法拉第杯30的放大器高阻为10
11
ω时,法拉第杯30可检测电流为6.0
×
10-14
a-2.7
×
10-10
a的离子流,二次电子倍增器31(sem)可检测低至1.6
×
10-18
a的离子流。
[0066]
本实施例的质量分析器系统,通过采用非对称离子光学设计,可以减少分析电磁铁的中心轨道半径、离子透镜组与分析电磁铁之间的间距、分析电磁铁与检测器之间的间距等相关参数,使整个系统的结构布局紧凑,从而有效减少系统的整体尺寸、重量。此外,通过对离子透镜组、分析电磁铁、以及检测器的结构组成及参数进行改进,不仅可以提高分辨率(大于500)、离子传输效率(90%以上)等性能,实现质量数范围3-280amu全质量数的同位素分析,还可以降低耗电量,实现环保节能。
[0067]
实施例2
[0068]
本实施例公开一种质量分析器系统,其与实施例1相比,区别在于:如图7所示,还包括第二聚焦透镜4和变焦透镜5,其中,第二聚焦透镜4设于离子透镜组1与分析电磁铁2之间,用于优化离子透镜组输出的离子束的聚焦效果,改善平顶峰效果,进一步提高传输效率;变焦透镜5设于分析电磁铁2与检测器3之间,用于改善色散距离,以提高多组离子束与
多个法拉第杯接收器之间的套峰能力。
[0069]
具体来说,第二聚焦透镜4优选布置在距离分析电磁铁2的进口较近的位置,变焦透镜5优选布置在距离分析电磁铁2的出口较近位置,需要说明的是,由于第二聚焦透镜4和变焦透镜5只是起优化离子束的聚焦效果、改善质量分析器系统的色散的作用,不会影响离子束最终的聚焦像点(即法拉第杯接收位置),因此,第二聚焦透镜4和变焦透镜5还可以布置在除上述位置以外的其他位置,具体可根据需求灵活选择。
[0070]
如图8、图9所示,第二聚焦透镜4采用静电四级杆透镜,其包括四根极杆41,其中,两根极杆41相对设置,并处于同一个方向(如水平方向,即x轴方向)上,另外两根极杆41相对设置,并处于另一个方向(如竖直方向,即y轴方向)上,相邻的极杆41的中心与四根极杆41合围的内切圆的圆心间的夹角为90
°
。若在水平方向上的两根极杆41施加正电压则在竖直方向上的两根极杆41施加相同大小的负电压,反之,若在水平方向上的两根极杆1施加负电压,则在竖直方向上的两根极杆41施加相同大小的正电压,施加的电压的范围优选在0
±
20v之间。
[0071]
变焦透镜5可以采用四级杆、六级杆、八级杆、以及十二级杆中的任意一种透镜,以对离子束的质量色散进行
±
5%以内的微调。变焦透镜5的施加电压方式与第二聚焦透镜类似,以六级杆的透镜为例,其包括六根第二极杆、x接线端、以及y接线端,各个第二极杆的一端与x接线端相连,各个第二极杆的另一端与y接线端相连,若在x接线端上的六根极杆施加正电压,则在y接线端上的六根极杆施加相同大小的负电压,反之,若在x接线端上的六根极杆施加负电压,则在y接线端上的六根极杆施加相同大小的正电压,施加的电压的范围优选在0
±
50v之间。
[0072]
更具体来说,第二聚焦透镜4和变焦透镜5中的各个极杆可以为圆形极杆、也可以为半圆形极杆,还可以为双曲面极杆、棒状极杆、以及平面极杆中的任意一种。并且,若极杆为圆柱极杆时,则圆柱极杆的半径为各个极杆合围的内切圆的半径的1.1~1.2倍,极杆的长度应不小于其内切圆的半径的3倍;若极杆为其他类型的极杆时,极杆的半径和长度也可按与之(圆柱极杆)相当的设计,这里不再一一赘述。
[0073]
本实施例的质量分析器系统,具有实施例1中的质量分析器系统的所有优点,并且,由于增加了第二聚焦透镜和变焦透镜,由于第二聚焦透镜可以在离子进入分析电磁铁之前对其进行进一步的做x方向和y方向的聚焦,变焦透镜可以对经过分析电磁铁质量分离后的离子的质量色散距离做进一步调整,因此最终可以提高检测器的接收效率。
[0074]
实施例3
[0075]
本实施例公开一种质谱仪,其包括离子源、屏蔽手套箱、以及实施例1中所述的质量分析器系统。
[0076]
具体来说,本实施例的质谱仪可以是热电离质谱仪(tims),也可以是多接收电感耦合等离子质谱仪(mc-icp-ms),其检测过程为:离子源产生的离子经离子透镜组1提取加速、聚焦整形后到达分析电磁铁2,不同质量的离子在分析电磁铁2产生的扇形磁场内进行质量分离,最终离子到达检测器3进行离子束强度检测。
[0077]
其中,质量分析器系统中的离子透镜组1、分析电磁铁2、检测器3优选采用从右向左的顺序依次排列,相比于现有技术中的离子透镜组1、分析电磁铁2、检测器3均采用的从左到右排列,由于,离子源均采用右侧开门,可以便于离子源与屏蔽手套箱之间的密封。
[0078]
本实施例的质谱仪,由于采用了实施例1所述的质量分析器系统,具有以下优点:结构布局紧凑,体积小,整机尺寸可降至1750х1050х1600mm;重量轻,整机重量可降至1000kg;耗电量小,整机额定功率可将至3.5kw,相比于现有技术,功率降低了一半左右;分辨率高,可达到500以上;离子传输效率高,可达到90%以上;放大倍数(m)可达到1.5,可实现质量数范围3-280amu全质量数的同位素分析。
[0079]
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

技术特征:
1.一种质量分析器系统,包括离子透镜组(1)、分析电磁铁(2)、以及检测器(3),其特征在于,所述离子透镜组、所述分析电磁铁、以及所述检测器采用非对称结构,离子透镜组与分析电磁铁之间的间距小于分析电磁铁与检测器之间的间距,且分析电磁铁的磁场中心偏转半径为200-220mm,离子透镜组输出的离子进入分析电磁铁的入射角小于分析电磁铁输出的离子的出射角。2.根据权利要求1所述的质量分析器系统,其特征在于,所述离子透镜组与所述分析电磁铁的间距为450-480mm,所述分析电磁铁与所述检测器之间的间距为570-600mm,分析电磁铁的入射角为27-30
°
,所述分析电磁铁的出射角为29-32
°
。3.根据权利要求1所述的质量分析器系统,其特征在于,所述离子透镜组包括加速极透镜(10)、引出极透镜(11)、聚焦透镜(12)、聚焦极x透镜(13)、聚焦极z透镜(14)、离子源出口狭缝(15)、输出透镜(16)、以及高压电源连接器,所述加速极透镜、所述引出极透镜、所述聚焦透镜、所述聚焦极x透镜、所述聚焦极z透镜、所述离子源出口狭缝、以及所述输出透镜按顺序依次排列,输出透镜处于靠近所述分析电磁铁的位置;所述高压电源连接器与所述加速极透镜、所述引出极透镜、所述聚焦透镜、所述聚焦极x透镜、所述聚焦极z透镜、以及所述输出透镜分别电连接,以用于提供电压。4.根据权利要求3所述的质量分析器系统,其特征在于,所述高压电源连接器的电压为10kv以下,所述离子源出口狭缝的宽度为0.2mm。5.根据权利要求3所述的质量分析器系统,其特征在于,所述高压电源连接器包括多个供电模块,分别为第一模块、第二模块、第三模块、第四模块、第五模块、以及第六模块,所述第一模块与所述加速极透镜电连接,用于向加速极透镜提供的电压范围为9900
±
100v;所述第二模块与所述引出极透镜电连接,用于向引出极透镜提供的电压范围为8600
±
300v;所述第三模块与所述聚焦透镜电连接,用于向聚焦透镜提供的电压范围为9000
±
100v;所述第四模块与所述聚焦极x透镜电连接,用于向聚焦极x透镜提供的电压范围为5000
±
100v;所述第五模块与所述聚焦极z透镜电连接,用于向聚焦极z透镜提供的电压范围为450
±
250v;所述第六模块与所述输出透镜电连接,用于向输出透镜提供的电压范围为1500
±
250v。6.根据权利要求1所述的质量分析器系统,其特征在于,所述分析电磁铁包括磁轭(20)、极靴(21)、磁极线圈(23)、以及磁感应稳定线圈(22),所述极靴设于所述磁轭内,所述磁极线圈和所述磁感应稳定线圈套设于所述极靴上,且磁感应稳定线圈处于靠近极靴间隙的一端,磁极线圈用于产生磁场,磁感应稳定线圈用于对磁极线圈产生的磁场进行补偿。7.根据权利要求6所述的质量分析器系统,其特征在于,所述极靴的间隙为12-15mm,所述磁极线圈和所述磁感应稳定线圈均采用电流密度小于2a/mm2的低阻值漆包线绕制。
8.根据权利要求1所述的质量分析器系统,其特征在于,所述检测器中的法拉第杯(30)的数量为八个以上,各个法拉第杯按顺序依次排成一列,以形成聚焦平面,其中,处于最中间位置的法拉第杯的位置固定,其余的法拉第杯的位置能够沿聚焦平面方向移动。9.根据权利要求8所述的质量分析器系统,其特征在于,所述聚焦平面与所述分析电磁铁的离子传输主光轴之间的夹角为20-30
°
,所述法拉第杯的接收狭缝宽度为0.8-1.0mm。10.根据权利要求1-9任一项所述的质量分析器系统,其特征在于,还包括第二聚焦透镜(4)和变焦透镜(5),所述第二聚焦透镜设于所述离子透镜组与所述分析电磁铁之间,用于优化离子透镜组输出的离子束的聚焦效果;所述变焦透镜设于所述分析电磁铁与所述检测器之间,用于改善色散距离。11.一种质谱仪,其特征在于,包括权利要求1-10任一项所述的质量分析器系统。

技术总结
本发明公开一种质量分析器系统,包括离子透镜组、分析电磁铁、以及检测器,所述离子透镜组、所述分析电磁铁、以及所述检测器采用非对称结构,离子透镜组与分析电磁铁之间的间距小于分析电磁铁与检测器之间的间距,且分析电磁铁的磁场中心偏转半径为200-220mm,离子透镜组输出的离子进入分析电磁铁的入射角小于分析电磁铁输出的离子的出射角。本发明还公开一种质谱仪。本发明具有布局紧凑、占地空间小、质量轻等优点。量轻等优点。量轻等优点。


技术研发人员:王志强 刘权卫 张兆清 房映彤 杨菡 陈云清 马敬 侯留东
受保护的技术使用者:中国核电工程有限公司
技术研发日:2022.03.16
技术公布日:2022/7/5
转载请注明原文地址: https://www.8miu.com/read-13582.html

最新回复(0)