一种连接器总成及加工方法与流程

allin2024-12-02  50



1.本发明涉及汽车电器技术领域,更具体地,涉及一种连接器总成及加工方法。


背景技术:

2.随着新能源汽车的越来越普及,新能源汽车电器连接的设备和设施也随之发展起来,新能源汽车上的连接器总成由于要达到大电流的要求,导通电流都比较大,连接器总成上的线缆的直径也随之增大。目前大部分连接器总成上的线缆都使用多芯的铜线缆,重量大,价格高,成为限制新能源汽车普及的障碍。另外,多芯的线缆虽然较柔软,能够方便加工和布线,由于线径过粗,重量较大,在汽车行驶过程中线缆会频繁摩擦车壳,导致线缆的绝缘层破损,造成高压放电,轻则损坏车辆,重则会造成严重的交通事故。
3.为了降低电磁干扰的影响,导电线缆通常采用屏蔽网进行电磁干扰的屏蔽,目前常用的屏蔽网是采用金属丝编制而成,需要在线缆生产设备中增加屏蔽编织机,设备价格高,占地面积大,导致连接器的屏蔽线缆价格居高不下。
4.因此,汽车电器技术领域急需一种价格低,寿命长的连接器线缆及新型的线缆屏蔽结构。


技术实现要素:

5.本发明的目的是使用电连接骨架代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长连接器总成的使用寿命。使用导电塑料或导电涂料代替编制屏蔽网,减少屏蔽网编制设备的使用,占地面积小,降低了线缆的加工成本,同时降低了连接器总成的生产成本。
6.根据本发明的第一方面,提供了一种连接器总成,包括电连接骨架及与所述电连接骨架两端连接的连接器,其特征在于,所述连接器中包含连接端子、外壳和设置在所述外壳内并具有屏蔽效能的内壳,所述电连接骨架两端分别与所述连接端子电连接,所述电连接骨架外周从内向外包覆绝缘层和屏蔽层,所述屏蔽层与所述内壳电连接,所述内壳的材质含有导电塑料,所述外壳和所述内壳采用一体成型的方式固定在至少部分所述连接端子和至少部分所述电连接骨架上。
7.可选地,所述连接端子的材质含有铜或铜合金,所述电连接骨架材质含有铝或铝合金,所述电连接骨架通过焊接或压接的方式与所述连接端子电连接。
8.可选地,所述电连接骨架为刚性体,所述电连接骨架的抗拉强度大于75mpa。
9.可选地,所述电连接骨架横截面形状为圆形、椭圆形、矩形、多边形、a形、b形、d形、m形、n形、o形、s形、e形、f形、h形、k形、l形、t形、u形、v形、w形、x形、y形、z形、p形、半弧形、弧形、波浪形中的一种或几种。
10.可选地,所述电连接骨架的部分区域为柔性。
11.可选地,所述电连接骨架包括至少一个弯折部。
12.可选地,所述电连接骨架的横截面形状为多边形,所述多边形的角全部倒角或倒
圆。
13.可选地,所述电连接骨架的横截面积为3.5mm
2-240mm2。
14.可选地,所述外壳或所述绝缘层的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。
15.可选地,所述导电塑料为包含导电颗粒的高分子材料,所述导电颗粒材质含有金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种;所述高分子材料的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。
16.可选地,所述导电塑料中所述导电颗粒的体积占比为3%-95%。
17.可选地,所述金属的材质含有金、银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、磷、碲、铍、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。
18.可选地,所述含碳导体含有石墨粉、碳纳米管材料、石墨烯材料、石墨银或石墨烯银中的一种或多种。
19.可选地,所述内壳与所述屏蔽层采用导电胶粘接或焊接或螺接或压接或卡接的方式电连接。
20.可选地,所述内壳的电导率大于等于4.8
×
106s/m。
21.可选地,所述屏蔽层与所述内壳之间的阻抗小于80mω。
22.可选地,所述屏蔽层的转移阻抗为小于100mω。
23.可选地,所述内壳的转移阻抗为小于100mω。
24.可选地,所述屏蔽层外周还套设外绝缘层,所述外绝缘层与所述外壳部分连接。
25.可选地,其中一个所述连接器为充电座。
26.根据本发明的第二方面,提供了一种连接器总成的加工方法,用于如上所述的连接器总成,所述加工方法包括:
27.s01:将所述电连接骨架定长切断后,所述电连接骨架的端部依次剥除部分所述外绝缘层、所述屏蔽层和所述绝缘层;
28.s02:以锻压、冲压、挤压或机加工的方式制备所述连接端子;
29.s03:所述电连接骨架通过焊接的方式与所述连接端子电连接,形成焊接半成品;
30.s04:准备双色成型机,将所述外壳和所述内壳的原材料倒入所述双色成型机的料筒中;
31.s05:将所述焊接半成品放置在所述成型机的成型模具中;
32.s06:打开双色成型机,将所述内壳和所述外壳依次从内到外注塑在部分所述连接端子和部分所述电连接骨架上。
33.可选地,所述导电塑料包括以下加工方法:
34.s11:准备所述导电颗粒的原材料,采用粉碎的方式加工成所述导电颗粒;
35.s12:准备混料机,将所述导电颗粒和所述高分子材料在所述塑料混料机里混合均匀,形成混合导电塑料;
36.s13:准备造粒机,将所述混合导电塑料加工为所述导电颗粒。
37.本发明的有益效果是:
38.1、使用电连接骨架代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长了连接器总成的使用寿命。
39.2、解决了目前充电线束使用柔性线缆,无法实现自动化生产及装配的问题,使用至少部分硬质的电连接骨架,可以实现线束的自动化装配和组装。
40.3、使用导电塑料或导电涂料代替编制屏蔽网,减少屏蔽网编制设备的使用,占地面积小,降低了线缆的加工成本,同时降低了连接器总成的生产成本。
41.4、外壳和内壳采用一体成型的方式固定在部分连接端子和部分电连接骨架上,加工便捷,减少产品重量,而且可以保证连接器的防水密封效果,降低了连接器的生产成本。
42.5、电连接骨架还设置了柔性部分和弯曲部分,可以根据车身的安装环境,合理设计连接器总成的结构,使连接器总成在车身上的安装更加容易,节省装配时间。
43.通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
44.被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
45.图1为本发明一种新型屏蔽材料的连接器总成的结构示意图。
46.图2为本发明一种新型屏蔽材料的连接器总成的内壳的剖视图。
47.图中标示如下:
48.1-电连接骨架、11-绝缘层、12-屏蔽层、13-外绝缘层、2-连接器、21-外壳、3-连接端子、4-内壳。
具体实施方式
49.现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
50.以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明
及其应用或使用的任何限制。
51.对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
52.在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
53.一种连接器总成,如图1-图2所示,包括电连接骨架1及与所述电连接骨架1两端连接的连接器2,所述连接器2中包含连接端子3、外壳21和设置在所述外壳21内并具有屏蔽效能的内壳4,所述电连接骨架1两端分别与所述连接端子3电连接,所述电连接骨架1外周从内向外包覆绝缘层11和屏蔽层12,所述屏蔽层12与所述内壳4电连接,所述内壳4的材质含有导电塑料,所述外壳21和所述内壳4采用一体成型的方式固定在至少部分所述连接端子3和至少部分所述电连接骨架1上。
54.目前大部分连接器总成上的充电线缆都使用多芯的铜线缆,重量大,价格高,成为限制新能源汽车普及的障碍。另外,多芯的线缆虽然较柔软,能够方便加工和布线,都是由于线径过粗,重量较大,在汽车行驶过程中线缆会频繁摩擦车壳,导致线缆的绝缘层11破损,造成高压放电,轻则损坏车辆,重则会造成严重的交通事故。因此本发明使用电连接骨架1的线缆形式替代多芯线缆结构,使线缆能够固定在车壳上,不会随着汽车振动与车壳摩擦,延长连接器的使用寿命,减少事故发生率。电连接骨架1可以为单芯的铜棒或铝棒。
55.为了降低电磁干扰的影响,导电线缆通常采用屏蔽网进行电磁干扰的屏蔽,目前常用的屏蔽网是采用金属丝编制而成,需要在线缆生产设备中增加屏蔽编织机,设备价格高,占地面积大,导致连接器2的屏蔽线缆价格居高不下。
56.电连接骨架1多用于在车内传输大电流,在电流经过时会产生较大的电磁场,为了防止大电流产生的电磁场对汽车中的电器进行电磁干扰,影响其他电器的正常工作,因此需要将大电流产生的电磁场进行电磁屏蔽。数据通信线缆则相反,其内部传输电磁信号,这个电磁信号会被外界的电磁场干扰,从而导致电磁信号失真,无法有效的传递信号,因此需要电磁屏蔽来屏蔽外界的电磁场干扰。
57.电磁屏蔽主要是使用屏蔽体来防止高频电磁场的影响,从而有效地控制电磁波从某一区域向另一区域进行辐射传播。基本原理是采用低电阻值的导体材料制作屏蔽体,利用电磁波在屏蔽体表面的反射,在屏蔽体内部的被吸收以及在传输过程中的被损耗而产生屏蔽作用。除了电连接骨架1需要进行电磁屏蔽,其与连接器2及连接端子3的连接处也时需要特别进行电磁屏蔽的地方,本技术的电连接骨架1的两端分别和连接器2的连接端子3连接,将这些连接处设置在内壳4内,内壳4与电连接骨架1外的屏蔽层12电性连接,从而达到完整屏蔽的效果。屏蔽层12与电连接骨架1之间设置绝缘层11,防止两者电连接。
58.本发明使用电连接骨架1代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长了连接器总成的使用寿命。使用导电塑料或导电涂料代替编制屏蔽网,减少屏蔽网编制设备的使用,占地面积小,外壳和内壳采用一体成型的方式(例如:注塑)固定在部分连接端子和部分电连接骨架上,加工便捷,减少产品重量,而且可以保证连接器的防水密封效果,降低了连接器总成的生产成本。
59.在一些实施例中,所述连接端子3的材质含有铜或铜合金,所述电连接骨架1材质含有铝或铝合金,所述电连接骨架1通过焊接或压接的方式与所述连接端子电连接。铜或铜
合金的导电率高,并且耐摩擦,可以广泛用于电传输领域。采用铝或铝合金材质的电连接骨架1,具有刚性好、质量轻、传输效率高的优点,特别适合大电流的传输。电连接骨架1通过焊接与连接端子连接,所采用的焊接方式,包括电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接的一种或几种,是采用集中热能或压力,使连接端子和电连接骨架1接触位置产生熔融连接,焊接方式连接稳固,可以实现异种材料的连接,由于接触位置相融,导电效果更好。
60.电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法。
61.摩擦焊方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
62.超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
63.弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
64.激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
65.摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
66.电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
67.压力焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
68.磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的传导金属焊接在一起。
69.压接方式,压接是将电连接骨架1与连接端子3装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
70.在一些实施例中,所述电连接骨架1为刚性体,所述电连接骨架1的抗拉强度大于75mpa。刚性体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。绝对刚体实际上是不存在的,只是一种理想模型,因为任何物体在受力作用后,都或多或少地变形,如果变形的程度相对于物体本身几何尺寸来说极为微小,在研究物体运动时变形就可以忽略不计。所以,由刚性体材料制成的电连接骨架1在使用过程中,产生的形变量微乎其微,可忽略不计,刚性体的抗拉强度越大,其变形量越小。
71.为了验证电连接骨架1的抗拉强度,对电连接骨架1在xy方向折弯的扭矩以及振动过程中是否发生异响的影响,发明人选用了相同尺寸规格的,使用不同抗拉强度的电连接骨架1样件,对电连接骨架1折弯时的扭矩和振动过程中的异响进行测试。
72.电连接骨架1的拉力值的测试方法:使用万能拉力测试机,将电连接骨架1,两端分别固定在万能拉力测试机的拉伸治具上,并以50mm/mi n的速度进行拉伸,记录最终拉断时
的拉力值,在本实施例中,拉力值大于1600n为合格值。
73.电连接骨架1的扭矩测试方法:使用扭矩测试仪,将电连接骨架1以相同的半径,相同的速度弯折90
°
的时候,测试弯折过程中电连接骨架1变形的扭矩值,在本实施例中,扭矩值小于60n
·
m为合格值。
74.电连接骨架1是否会出现异响,试验方法为选择相同尺寸规格的,使用不同抗拉强度的电连接骨架1样件,相同规格的连接器2组装在一起,固定在振动试验台上,在振动试验过程中,观察电连接骨架1是否会出现异响。
75.表1:不同的抗拉强度对电连接骨架1的扭矩值和异响的影响
[0076][0077]
从上表1中可以看出,当电连接骨架1抗拉强度为小于等于75mpa时,电连接骨架1拉断时的拉力值小于1600n,此时电连接骨架1本身的强度不高,受到较小外力时容易拉断,造成电连接骨架1功能失效,从而无法起到电能传输的目的。另一方面,由于电连接骨架1的抗拉强度值越大,电连接骨架1越不易发生形变,所以振动试验过程中,电连接骨架1越不容易相对两端连接的连接器2振动而产生异响,相反,电连接骨架1的抗拉强度值越小,电连接骨架1越容易发生形变,所以振动试验过程中,电连接骨架1越容易相对两端连接的连接器2振动而产生异响。从上表1中可以看出,当电连接骨架1抗拉强度为小于等于75mpa时,电连接骨架1在振动试验过程中会产生异响。因此,发明人优选抗拉强度为大于75mpa。
[0078]
在一些实施例中,电连接骨架1的横截面为圆形、椭圆形、矩形、多边形、a形、b形、d形、m形、n形、o形、s形、e形、f形、h形、k形、l形、t形、u形、v形、w形、x形、y形、z形、p形、半弧形、弧形、波浪形中的一种或几种。
[0079]
在一些实施例中,所述电连接骨架1的部分区域为柔性体。
[0080]
通过将电连接骨架1的部分区域设置为柔性(即:柔性导体),能够保证在电连接骨架2上能够做出较大的折弯角度,以方便设置在拐角比较大的车体内。
[0081]
具体实施时,通过在电连接骨架1需要折弯的区域设置为柔性,可在将电连接器总成组装在车辆上时,更容易安装,方便操作,减少生产工时。
[0082]
具体实施时,通过将电连接骨架1至少部分区域设置成柔性(即:柔性导体),可方便在与车身组装时,固定到车身上,以及降低柔性导体因振动与车壳或者两端连接的连接器2之间产生异响,以及避免与连接端子3连接处发生断裂。同时也避免部分柔性导体由于与车身经常的摩擦,导致绝缘防护层破损,柔性导体与车身电连接发生短路现象,严重时造成汽车燃烧。
[0083]
在一些实施例中,所述电连接骨架1包括至少一个弯折部。
[0084]
具体实施时,可根据需要,在电连接骨架1上设置弯折部,以满足在车辆上布线的过程中,需要改变电连接骨架1的方向处有弯折部,方便操作人员布线,减少车辆的加工工
时,能够降低车辆的生产成本,增加市场竞争力。
[0085]
在一些实施例中,所述电连接骨架1的横截面形状为多边形,所述多边形的角全部倒角或倒圆。
[0086]
具体实施时,截面为多边形形状的电连接骨架1的角全部倒角或倒圆,可方便电连接骨架1与连接端子之间连接,使得二者之间在通过焊接或者压接时,电连接骨架1与连接端子之间连接的更为牢固,接触面积更大,导通电流更好;防止电连接骨架1与连接端子之间因连接时接触面积过小,导致电阻过大,引起发热甚至发生燃烧事故;也可防止在使用过程中,因多边形相邻的两条边形成的棱边划破绝缘层造成人员伤亡以及财产损失。
[0087]
在一些实施例中,所述电连接骨架1的横截面积为3.5mm
2-240mm2。电连接骨架1的截面积决定电连接骨架1所能导通的电流,一般情况下,实现信号导通的电连接骨架1,电流较小,电连接骨架1截面积也较小,例如用于传输信号的线电连接骨架1最小截面积可达到3.5mm2,而实现电源导通的电连接骨架1,电流较大,电连接骨架1截面积也较大,例如汽车蓄电池线束,导体最大截面积达到240mm2。
[0088]
在一些实施例中,所述外壳21或所述绝缘层11的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。
[0089]
下面举例说明材料的特性。
[0090]
聚甲醛是一种表面光滑、有光泽的、硬而致密的材料,呈淡黄或白色,可在-40℃-100℃温度范围内长期使用。它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油、耐过氧化物性能。
[0091]
聚碳酸酯,无色透明,耐热,抗冲击,阻燃bi级,在普通使用温度内都有良好的机械性能。同性能接近的聚甲基丙烯酸甲酯相比,聚碳酸酯的耐冲击性能好,折射率高,加工性能好,不需要添加剂就具有很高级的阻燃性能。
[0092]
聚酰胺,具有无毒、质轻、优良的机械强度,具有较好的耐磨性及耐腐蚀性,可代替铜等金属应用在机械、化工、仪表、汽车等工业中制造轴承、齿轮、泵叶及其他零件。
[0093]
进一步的,所述导电塑料为包含导电颗粒的高分子材料,所述导电颗粒材质含有金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种;所述高分子材料的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、
交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。可以根据需要选择含有不同颗粒的导电塑料。
[0094]
进一步的,所述导电塑料中所述导电颗粒的体积占比为3%-95%。如果导电颗粒的体积占比过小,则导电塑料的导电率不足,达不到理想的屏蔽效果。因此发明人对不同导电颗粒的体积占比的导电塑料进行了测试,如果导电塑料的导电率小于99%为不合格,测试结果如表2所示。
[0095]
表2:不同导电颗粒的体积占比的导电塑料对导电率的影响
[0096][0097]
从表2可知,当导电颗粒的体积占比小于3%时,导电塑料的导电率小于99%,不能够满足需要,而当导电颗粒的体积占比大于95%后导电率并无增加,且所需工艺要求也越来越高,因此发明人优选所述导电塑料中所述导电颗粒的体积占比为3%-95%。
[0098]
在一些实施例中,所述金属的材质含有金、银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、磷、碲、铍、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。为了论证不同金属的材质对导电涂料和导电塑料的导电率的影响,发明人采用导电塑料为例进行了试验,使用相同规格尺寸、不同材质的金属颗粒制作导电塑料的样件,分别测试导电塑料的导电率,实验结果如下表3所示,在本实施例中,导电塑料的导电率大于99%为理想值。
[0099]
表3:不同材质的金属颗粒对导电塑料的导电率的影响
[0100][0101]
从上表3可以看出,选用的不同金属颗粒制作的导电塑料,导电率都在理想值范围内,另外,磷是非金属材料,不能直接作为导电镀层的材质,但是可以添加到其他金属中形成合金,提高金属本身的导电和机械性能。因此,发明人设定金属颗粒的材质含有金、银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。
[0102]
在一些实施例中,所述含碳导体含有石墨粉、碳纳米管材料、石墨烯材料、石墨银或石墨烯银中的一种或多种。石墨粉是一种矿物粉末,主要成分为碳单质,质软,黑灰色;石墨粉是很好的非金属导电物质。碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。石墨烯更是具有极高的电学性能,含有这三种材料的含碳导体导电率高,屏蔽性能好,能够很好的实现对电连接骨架1的电磁屏蔽。
[0103]
在一些实施例中,所述内壳4与所述屏蔽层12采用导电胶粘接或焊接或螺接或压接或卡接的方式电连接。导电胶是一种固化或干燥后具有一定导电性的胶粘剂。它可以将
多种导电材料连接在一起,使被连接材料间形成电的通路。在电子工业中,导电胶已成为一种必不可少的新材料。通过导电胶粘的方式连接,能够保证内壳4与屏蔽层12之间的导电率,起到更好的屏蔽效果。热压焊是利用加热和加压力,使内壳4与屏蔽层12的焊接区压焊在一起。其原理是通过加热和加压力,使焊接区发生塑性变形,使两者触面间达到原子的引力范围,从而使原子间产生吸引力,达到键合的目的。压接方式,压接是将内壳4与屏蔽层12装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。通过压接方式连接,能够保证内壳4与屏蔽层12之间的导电率,起到更好的屏蔽效果。另外,螺接,卡接也是内壳4与屏蔽层12连接方式,可在保证内壳4与屏蔽层12之间的具有良好的导电率;同时,可在连接器总成出现故障时,进行维修检查,更换受损零件,方便后续维修,以及降低客户在使用过程中的维修成本。
[0104]
在一些实施例中,所述内壳4的电导率大于等于4.8
×
106s/m。
[0105]
内壳4的电导率要尽可能大,这样内壳4产生的涡流电流才会无阻碍的流回能量源或接地位置,如果内壳4的电导率较小,则在内壳4产生的电流过小,不容易导出涡流电流,从而,影响内壳4的屏蔽效果。
[0106]
为了验证内壳4的电导率对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2、和连接端子3,屏蔽层12和不同导电率材质制成的相同规格的内壳4,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表4所示,在本实施例中,屏蔽性能值大于40db为理想值。
[0107]
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试值2),在内壳4外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
[0108]
表4:内壳4的电导率对屏蔽性能的影响
[0109][0110]
从表4可以看出,当内壳4的电导率小于4.8
×
106s/m时,屏蔽性能值小于40db,不符合理想值要求,内壳4的电导率大于等于4.8
×
106s/m时,屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定内壳4的电导率大于等于4.8
×
106s/m。
[0111]
在一些实施例中,所述屏蔽层12与所述内壳4之间的阻抗小于80mω。
[0112]
屏蔽层12与内壳4之间的阻抗要尽可能小,这样内壳4产生的电流才会无阻碍的流回能量源或接地位置,如果屏蔽层12与内壳4之间的阻抗较大,则会在屏蔽层12与内壳4之间产生较大的电流,从而使线缆连接处产生较大的辐射。
[0113]
为了验证屏蔽层12与内壳4之间的阻抗值对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2、和连接端子3,选用不同的屏蔽层12与内壳4之间的阻抗,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表5所示,在本实施例中,屏蔽性能值大于40db为理想值。
[0114]
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试
值2),在内壳4外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
[0115]
表5:屏蔽层12与内壳4之间的阻抗对屏蔽性能的影响
[0116][0117]
从表5可以看出,当屏蔽层12与内壳4之间的阻抗值大于80mω时,屏蔽性能值小于40db,不符合理想值要求,而屏蔽层12与内壳4之间的阻抗值为小于80mω时,屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定屏蔽层12与内壳4之间的阻抗为小于80mω。
[0118]
在一些实施例中,所述屏蔽层12的转移阻抗为小于100mω。屏蔽材料通常用转移阻抗来表征屏蔽层12的屏蔽效果,转移阻抗越小,屏蔽效果越好。屏蔽层12的转移阻抗定义为单位长度屏蔽体感应的差模电压u与屏蔽体表面通过的电流is之比,即:
[0119]zt
=u/is,所以可以理解为,屏蔽层12的转移阻抗将屏蔽层12电流转换成差模干扰。转移阻抗越小越好,即减小差模干扰转换,可以得到较好的屏蔽性能。
[0120]
为了验证不同转移阻抗值的屏蔽层12对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2和连接端子3,采用不同转移阻抗值的屏蔽层12,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表6所示,在本实施例中,屏蔽性能值大于40db为理想值。
[0121]
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试值2),在屏蔽层12外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
[0122]
表6:屏蔽层12的转移阻抗对屏蔽性能的影响
[0123][0124]
从上表6可以看出,当屏蔽层12的转移阻抗值大于100mω时,屏蔽层12的屏蔽性能值小于40db,不符合理想值要求,而屏蔽层12的转移阻抗值为小于100mω时,屏蔽层12的屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定屏蔽层12的转移阻抗为小于100mω。
[0125]
在一些实施例中,所述内壳4的转移阻抗为小于100mω。为了验证不同转移阻抗值的内壳4对屏蔽效果的影响,发明人选用相同规格的电连接骨架1、连接器2和连接端子3,采用不同转移阻抗值的内壳4,制作了一系列的样件,分别测试屏蔽效果,实验结果如下表7所示,在本实施例中,屏蔽性能值大于40db为理想值。
[0126]
屏蔽性能值测试方法为:测试仪器对电连接骨架1输出一个信号值(此数值为测试
值2),在内壳4外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
[0127]
表7:内壳4的转移阻抗对屏蔽性能的影响
[0128][0129]
从上表7可以看出,当内壳4的转移阻抗值大于100mω时,内壳4的屏蔽性能值小于40db,不符合理想值要求,而内壳4的转移阻抗值为小于100mω时,内壳4的屏蔽性能值全部符合理想值要求,而且趋势越来越好,因此,发明人设定内壳4的转移阻抗为小于100mω。
[0130]
在一些实施例中,所述屏蔽层12外周还套设外绝缘层13,所述外绝缘层12与所述外壳21部分连接。如图2所示,在屏蔽层12的外周还套设了外绝缘层13,外绝缘层13用于屏蔽层12与外部设备的绝缘,防止屏蔽层12与车体连接可能会出现短路的情况。
[0131]
在一些实施例中,其中一个所述连接器2为充电座。随着新能源汽车的越来越普及,为新能源汽车充电的设备和设施也随之发展起来,新能源汽车上的充电电池由于要达到快充的要求,需要用到充电座总成,本发明中其中一个连接器2为充电座,连接充电枪,另一端的连接器2为高压连接器,连接充电电池,实现为充电电池充电的目的。
[0132]
本发明还公开了一种连接器总成的加工方法,用于生产权利要求1-16任一项所述的连接器总成,其特征在于,所述加工方法包括:
[0133]
s01:将所述电连接骨架定长切断后,所述电连接骨架1的端部依次剥除部分所述外绝缘层13、所述屏蔽层12和所述绝缘层11;
[0134]
s02:以锻压、冲压、挤压或机加工的方式制备所述连接端子3;
[0135]
s03:所述电连接骨架1通过焊接的方式与所述连接端子3电连接,形成焊接半成品;
[0136]
s04:准备双色成型机,将所述外壳21和所述内壳4的原材料倒入所述双色成型机的料筒中;
[0137]
s05:将所述焊接半成品放置在所述成型机的成型模具中;
[0138]
s06:打开双色成型机,将所述内壳4和所述外壳21依次从内到外注塑在部分所述连接端子3和部分所述电连接骨架1上。
[0139]
进一步的,导电塑料包括以下加工方法:
[0140]
s11:准备所述导电颗粒的原材料,采用粉碎的方式加工成所述导电颗粒;
[0141]
s12:准备混料机,将所述导电颗粒和所述高分子材料在所述塑料混料机里混合均匀,形成混合导电塑料;
[0142]
s13:准备造粒机,将所述混合导电塑料加工为所述导电颗粒。
[0143]
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

技术特征:
1.一种连接器总成,包括电连接骨架及与所述电连接骨架两端连接的连接器,其特征在于,所述连接器中包含连接端子、外壳和设置在所述外壳内并具有屏蔽效能的内壳,所述电连接骨架两端分别与所述连接端子电连接,所述电连接骨架外周从内向外包覆绝缘层和屏蔽层,所述屏蔽层与所述内壳电连接,所述内壳的材质含有导电塑料,所述外壳和所述内壳采用一体成型的方式固定在至少部分所述连接端子和至少部分所述电连接骨架上。2.根据权利要求1所述的连接器总成,其特征在于,所述连接端子的材质含有铜或铜合金,所述电连接骨架材质含有铝或铝合金,所述电连接骨架通过焊接或压接的方式与所述连接端子电连接。3.根据权利要求1所述的连接器总成,其特征在于,所述电连接骨架为刚性体,所述电连接骨架的抗拉强度大于75mpa。4.根据权利要求1所述的连接器总成,其特征在于,所述电连接骨架横截面形状为圆形、椭圆形、矩形、多边形、a形、b形、d形、m形、n形、o形、s形、e形、f形、h形、k形、l形、t形、u形、v形、w形、x形、y形、z形、p形、半弧形、弧形、波浪形中的一种或几种。5.根据权利要求1所述的连接器总成,其特征在于,所述电连接骨架的部分区域为柔性。6.根据权利要求1所述的连接器总成,其特征在于,所述电连接骨架包括至少一个弯折部。7.根据权利要求1所述的连接器总成,其特征在于,所述电连接骨架的横截面形状为多边形,所述多边形的角全部倒角或倒圆。8.根据权利要求1所述的连接器总成,其特征在于,所述电连接骨架的横截面积为3.5mm
2-240mm2。9.根据权利要求1所述的连接器总成,其特征在于,所述外壳或所述绝缘层的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。10.根据权利要求1所述的连接器总成,其特征在于,所述导电塑料为包含导电颗粒的高分子材料,所述导电颗粒材质含有金属、导电陶瓷、含碳导体、固体电解质、混合导体的一种或几种;所述高分子材料的材质含有四苯乙烯、聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、
脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或几种。11.根据权利要求10所述的连接器总成,其特征在于,所述导电塑料中所述导电颗粒的体积占比为3%-95%。12.根据权利要求10所述的连接器总成,其特征在于,所述金属的材质含有金、银、铜、镍、钛、锡、铝、镉、锆、铬、钴、锰、锌、磷、碲、铍、锡铅合金、银锑合金、钯、钯镍合金或银金锆合金中的一种或几种。13.根据权利要求10所述的连接器总成,其特征在于,所述含碳导体含有石墨粉、碳纳米管材料、石墨烯材料、石墨银或石墨烯银中的一种或多种。14.根据权利要求1所述的连接器总成,其特征在于,所述内壳与所述屏蔽层采用导电胶粘接或焊接或螺接或压接或卡接的方式电连接。15.根据权利要求1所述的新型屏蔽连接器总成,其特征在于,所述内壳的电导率大于等于4.8
×
106s/m。16.根据权利要求1所述的新型屏蔽连接器总成,其特征在于,所述屏蔽层与所述内壳之间的阻抗小于80mω。17.根据权利要求1所述的连接器总成,其特征在于,所述屏蔽层的转移阻抗为小于100mω。18.根据权利要求1所述的连接器总成,其特征在于,所述内壳的转移阻抗为小于100mω。19.根据权利要求1所述的连接器总成,其特征在于,所述屏蔽层外周还套设外绝缘层,所述外绝缘层与所述外壳部分连接。20.根据权利要求1所述的连接器总成,其特征在于,其中一个所述连接器为充电座。21.一种连接器总成的加工方法,用于生产权利要求1-20任一项所述的连接器总成,其特征在于,所述加工方法包括:s01:将所述电连接骨架定长切断后,所述电连接骨架的端部依次剥除部分所述外绝缘层、所述屏蔽层和所述绝缘层;s02:以锻压、冲压、挤压或机加工的方式制备所述连接端子;s03:所述电连接骨架通过焊接的方式与所述连接端子电连接,形成焊接半成品;s04:准备双色成型机,将所述外壳和所述内壳的原材料倒入所述双色成型机的料筒中;s05:将所述焊接半成品放置在所述成型机的成型模具中;s06:打开双色成型机,将所述内壳和所述外壳依次从内到外注塑在部分所述连接端子和部分所述电连接骨架上。22.根据权利要求21所述的连接器总成的加工方法,其特征在于,所述导电塑料包括以下加工方法:s11:准备所述导电颗粒的原材料,采用粉碎的方式加工成所述导电颗粒;s12:准备混料机,将所述导电颗粒和所述高分子材料在所述塑料混料机里混合均匀,形成混合导电塑料;s13:准备造粒机,将所述混合导电塑料加工为所述导电颗粒。

技术总结
本发明公开了一种连接器总成及加工方法,包括电连接骨架及与所述电连接骨架两端连接的连接器,连接器中包含连接端子、外壳和设置在外壳内并具有屏蔽效能的内壳,电连接骨架两端分别与连接端子电连接,电连接骨架外周从内向外包覆绝缘层和屏蔽层,屏蔽层与内壳电连接,内壳的材质含有导电塑料,外壳和内壳采用一体成型的方式固定在部分连接端子和部分电连接骨架上。本发明使用电连接骨架代替多芯铜线缆,减小线缆直径,减轻线缆重量,使线缆安装方便,减少与车壳的摩擦,延长了连接器的使用寿命。外壳和内壳采用一体成型的方式固定在部分连接端子和部分电连接骨架上,加工便捷,减少产品重量,而且可以保证连接器的防水密封效果,降低了连接器的生产成本。降低了连接器的生产成本。降低了连接器的生产成本。


技术研发人员:王超 苗云
受保护的技术使用者:吉林省中赢高科技有限公司
技术研发日:2022.03.14
技术公布日:2022/7/4
转载请注明原文地址: https://www.8miu.com/read-17264.html

最新回复(0)