1.本发明属于纳米光存储材料及生物传感科学技术领域,具体涉及一种热敏可擦写等离子激元纳米生物存储器及其制备方法。
背景技术:2.光存储技术是通过激光照射介质,与介质产生相互作用,从而使介质的性质产生变化而将信息存储起来,读出信息是通过激光扫描介质,识别出存储介质性质的变化。当前的光存储技术受限于二维存储平面的存储点的尺寸,并且由于衍射极限的存在,导致存储密度很难适应信息量剧增的时代。为了满足现在大数据时代对海量信息存储的要求,新的光存储技术成为了一个新的科研热点。为了突破现有光存储技术的壁垒,从二维存储到多维存储的发展成为了新的研究方向。
3.现在预研阶段的“荧光纳米晶体存储技术”,“dna存储技术”和“等离子体激元存储技术”有望成为下一代存储器的中坚力量。荧光纳米晶体技术原理就是利用激光改变荧光纳米晶体颗粒的电子状态,进而改变荧光的特性,从而能够在0和1信号间高速切换,从而实现三维存储;dna存储技术是利用脱氧核糖核酸中的四种碱基,将二进制的数据映射成为dna的碱基序列,从而能够通过合成dna的长链来达到大数据存储的目的,dna存储显著的优点为容量大,且其能够形成较为复杂的空间结构,能够实现大数据的多维存储;等离子体纳米激元存储是利用纳米金属表面的自由电子通过激光照射下,能够通过共振形成表面等离子体纳米激元,从而引起散射信号的变化,从而实现信息数据的存储,并且其纳米级的尺寸以及其能量能约束在远小于光波波长范围内的空间尺寸,从而能够突破衍射极限的限制的特性,能够很好的满足现在对存储设备小型化和存储密度高的需求,故在该领域得到了高度的重视。
4.为突破传统光存储介质的技术壁垒,更好地适应对存储设备微型化的需求,有待对新型光存储材料的合成进行进一步的研究。
技术实现要素:5.本发明针对现有技术中所存在的问题,提供一种热敏可擦写等离子激元纳米生物存储器及其制备方法,本发明提供的基于二嵌段dna的热敏可擦写等离子激元纳米存储器具有良好的光存储特性,能够并行提供输入和输出以及数据的传输,且通过优异的灵敏度和对光信息的重现性能够做到可视化,相对于传统的光存储介质对数据的读写,输入和输出更加的准确。
6.本发明为解决上述技术问题采用的技术方案如下:一种热敏可擦写等离子激元纳米生物存储器,所述纳米存储器包括透明基底及核-卫星结构金纳米颗粒,所述核-卫星结构金纳米颗粒固定在透明基底上;所述核-卫星结构金纳米颗粒内层为核金纳米颗粒,外层为卫星金纳米颗粒,所述核金纳米颗粒和卫星金纳米颗粒分别通过二嵌段互补dna片段进行修饰;在所述核金纳米颗粒上采用不同链长核
苷酸序列连接相应数量的卫星金纳米颗粒使形成核-卫星纳米团簇结构的核-卫星结构金纳米颗粒,通过改变互补dna片段序列的长度实现解链温度的精准调控。
7.进一步地,所述二嵌段互补dna片段的一端为polya或polyt结构,链长为5
−
30 bp;所述二嵌段互补dna片段另一端为随机可互补的dna序列,链长为10
−
60 bp;所述解链温度的调控范围为48-65℃。
8.进一步地,所述核金纳米颗粒直径为40-100nm,所述卫星金纳米颗粒直径为10-40nm。
9.进一步地,所述核金纳米颗粒和卫星金纳米颗粒通过调节ph的方法进行偶联,设置该ph为1-3。
10.进一步地,所述核-卫星结构金纳米颗粒表面修饰以短链巯基peg链,所述短链巯基peg链链长为200
−
10000。
11.进一步地,所述热敏可擦写等离子激元纳米存储器固定在透明基板材料上,所述透明基板材料为玻璃、ito玻璃、fto玻璃、亚克力、石英、聚苯乙烯、聚甲基丙烯酸甲酯、聚碳酸酯中的任意一种。
12.一种热敏可擦写等离子激元纳米生物存储器制备方法包括如下步骤:s1、将氯金酸水溶液在油浴锅中加热至150℃,快速加入还原剂柠檬酸钠溶液,并大力搅拌得到种子溶液;s2、将步骤s1所得的种子溶液进行离心提纯,得到卫星金纳米颗粒溶液;s3、将步骤s2所得的溶液稀释,逐步加入反应物氯金酸水溶液和还原剂柠檬酸钠溶液,反应结束,离心提纯得到核金纳米颗粒溶液;s4、dna贮存液的配制:将合成的dna片段以及与之互补的互补dna片段,分别配制成dna贮存液,备用;s5、取步骤s2所得的卫星金纳米颗粒,向所述卫星金纳米颗粒中加入步骤s4中所述dna片段,振荡摇匀,通过调节ph的方法进行偶联分别得到dna-aunp偶联卫星金纳米颗粒;取步骤s3所得的核金纳米颗粒,向所述核金纳米颗粒中加入步骤s4中所述的互补dna片段,振荡摇匀,通过调节ph的方法进行偶联得到dna-aunp偶联核金纳米颗粒s6、将步骤s5所得的dna-aunp偶联卫星金纳米颗粒和dna-aunp偶联核金纳米颗粒进行混合组装,得到核-卫星结构金纳米颗粒。
13.进一步地,所述步骤s4中,所述dna片段与互补dna的核苷酸序列如下表所示:
14.进一步地,取所述步骤s6所得的核-卫星结构金纳米颗粒,加入短链的巯基peg链,完成对核-卫星金纳米颗粒的表面改性。
15.进一步地,所述步骤s5中,向所述卫星金纳米颗粒中加入所述核苷酸序列的浓度
比为,核苷酸序列:卫星金纳米颗粒=200:1;向所述核金纳米颗粒中加入所述互补核苷酸序列的浓度比为,核苷酸序列:卫星金纳米颗粒=200:1。
16.进一步地,所述步骤s1中的氯金酸水溶液的浓度为28 mm,柠檬酸钠水溶液的浓度为40 mm。
17.进一步地,所述步骤s3中的氯金酸水溶液的浓度为2.8 mm,柠檬酸钠水溶液的质量分数为1%。
18.反应原理本发明的核-卫星结构金纳米颗粒通过激光照射条件下或直接调控环境温度逐渐升高,会导致偶联dna双链结构根据链长依次解链,解离释放出卫星金纳米颗粒,这一过程导致核-卫星结构金纳米颗粒的表面等离子体共振峰(lspr)光谱蓝移或是暗场图像颜色按照红
−
橙
−
黄
−
黄
−
绿
−
绿的规律变化,从而实现数据的写入;当撤除激光源一段时间后或当卫星金纳米颗粒反应液逐渐降至室温,该复合纳米颗粒又能自发自组装聚集起来,卫星金纳米颗粒可重连在核金纳米颗粒表面,此时光谱的峰值又能回到原来的初始位置,可实现数据重置与清除。通过不同链长双链dna连接的颗粒数量决定了存储器的阶数,可实现2
−
10阶的高效存储。
19.在玻璃基底上,本发明制备的核-卫星结构金纳米颗粒,在激光进行激发时,金纳米颗粒表面的自由电子和入射光子发生共振,产生表面等离子体激元spps,对入射光的吸收会显著增强,从而引起表面等离子体共振峰(spr)光谱位移量的变化。在暗场显微镜下,可以通过光谱仪监测到该核-卫星结构金纳米颗粒的等离子体共振峰,当使用外源激光进行激发时,该复合纳米颗粒会解链开来,从而使光谱的峰值发生蓝移,当撤离激发光源一段时间后,该复合纳米颗粒又能自发自组装聚集起来,此时光谱的峰值又能回到原来的初始位置。故其良好的重现性,对光信号刻录的灵敏性可以应用在光存储领域。
20.本发明的技术方案能产生以下的技术效果:1. 本发明通过不同尺寸金纳米颗粒组装形成的核卫星结构,通过其表面的等离子纳米激元,使得该复合材料具有良好的光存储特性,相对于传统的磁性存储材料,本材料光存储的存储密度高,并行程度高,光子之间不会相互作用,从而可以进行并行计算,处理的速度和能力远远高于电子的计算能力,并且能够并行提供输入和输出以及数据的传输;而且作为光存储材料,一般磁性存储的寿命为2-3年,而本材料光存储材料的寿命可以达到10年以上,并且其非接触式的读写信息均优于传统的磁性存储。
21.2. 本发明制备的核-卫星结构金纳米颗粒材料通过微纳波导的技术实现了表面等离子体激元spps的存储,通过该复合材料优异的灵敏度和对光信息的重现性能够做到可视化,相对于传统的光存储介质对数据的读写,输入和输出更加的准确。
22.3. 本发明通过不同链长双链dna连接的颗粒数量可决定存储器的阶数,实现2
−
10阶的高效存储。
附图说明
23.图1为本发明合成二嵌段dna连接的核-卫星结构金纳米颗粒的原理示意图;图2为本发明的直径15nm的卫星金纳米颗粒和直径50nm的核金纳米颗粒的紫外吸收光谱图;
图3为本发明的直径为15nm卫星金纳米颗粒和直径50nm的核金纳米颗粒的透射电子显微镜tem图以及粒径分布图;图4为本发明的核-卫星结构金纳米颗粒的紫外吸收光谱图;图5为本发明的核-卫星结构金纳米颗粒的透射电子显微镜tem图;图6为本发明激光激发下的实时紫外峰位置变化图;图7为本发明的变性与复性循环图;图8为本发明激光激发前后的暗场照片图;图9为本发明激光激发前后的spr散射光谱图。
24.序列表说明seq id no.1:dna1的核苷酸序列;seq id no.2:cdna1的核苷酸序列;seq id no.3:dna2的核苷酸序列;seq id no.4:cdna2的核苷酸序列;seq id no.5:dna3的核苷酸序列;seq id no.6:cdna3的核苷酸序列。
具体实施方式
25.为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。下述实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂家建议的条件。
26.图1为本发明的二嵌段dna连接的核-卫星结构金纳米颗粒的原理示意图。如图1所示,该核-卫星结构金纳米颗粒是由卫星金纳米颗粒连接核苷酸序列与核金纳米颗粒连接互补核苷酸序列通过调节ph的方法自组装而成,再通过巯基修饰玻璃基底表面,将核-卫星结构金纳米颗粒固定在玻璃基底上,然后通过暗场显微镜观察激光照射前后颗粒颜色以及散射光谱spr信号的变化。
27.在本技术具体的实施例1中,基于二嵌段dna连接的核-卫星结构金纳米颗粒制备的具体实施步骤如下:(1)15nm卫星金纳米颗粒的合成a、选取王水浸泡过夜洗净后的100 ml的三口烧瓶作为反应容器,置于油浴锅中,搭好冷凝装置;b、向烧瓶中加入55 ml的超纯水,设置油浴锅的温度为150 ℃加热,同时放入洗净的磁子,打开搅拌开关,大力搅拌,保持磁子在容器的正中央来控制合成的卫星金纳米颗粒的粒径的均一性;c、待油浴锅的温度升温至120 ℃时,快速加入浓度为28 mm的氯金酸水溶液0.7 ml;d、共沸至油浴锅的温度为150 ℃时,加入5 ml柠檬酸钠水溶液(40 mm)继续150 ℃加热搅拌10 min,待溶液由淡黄色变为柔和的粉红色时关闭热源继续搅拌15 min,待反应完成后撤掉热源自然冷却至室温。
28.(2)种子溶液的提纯a、将步骤(1)所得溶液配平置于高速离心机中,首先在800 rpm转速下离心10 min取上清液;b、将所得的上清液继续配平置于离心机中,然后在6500 rpm转速下离心10 min取沉淀,重复两次,重悬于超纯水中;c、将重悬过后的种子溶液在超声清洗仪中超声5 min后,过超滤膜避光4℃保存备用。
29.(3)50nm核金纳米颗粒的合成a、取步骤(2)离心提纯后的种子溶液10 ml于三口瓶中,加入30 ml超纯水稀释,放入油浴锅中快速搅拌,设置反应温度为90 ℃;b、待油浴锅的温度上升至90 ℃后,每隔1 h加入0.5 ml 1%的柠檬酸钠水溶液,每隔15 min加入0.5 ml 浓度为2.8 mm的氯金酸水溶液,每1 h取样品测实时反应中的溶液的紫外吸收峰的值,重复以上步骤,直至溶液的紫外吸收峰为531 nm时停止加料,撤掉热源自然冷却至室温;c、将所得核金纳米颗粒溶液进行离心纯化,配平后置于离心机中,4500 rpm转速下离心10 min取沉淀,重复3次,得到纯化的核金纳米颗粒溶液,过超滤膜4 ℃避光保存备用。
30.在上述步骤(3)反应结束后,进行紫外吸收光谱图,透射电子显微镜以及粒径分布图的表征:如图2所示,卫星金纳米颗粒的紫外吸收峰位于518 nm,核金纳米颗粒的紫外吸收峰位于531 nm,且都是单峰的结构,都呈现较窄的半峰宽以及光谱图都十分平滑,可以说明合成的纳米金颗粒的形状和尺寸均一分布;进一步地通过透射电子显微镜观察颗粒地形貌如图3所示,颗粒的大小分布均一,并对其进行粒径分析,可以观察到卫星金纳米颗粒以及核金纳米颗粒的尺寸分别为15
±
3 nm,50
±
3 nm,且大部分颗粒的粒径都集中在15 nm和50 nm。
31.(4)dna贮存液的配制a、将定制的dna1、dna2、dna3以及互补的核苷酸序列cdna1、cdna2、cdna3在5000转速下离心1 min;b、然后向每od引物中加入0.15 ml缓冲液配制成10 μm的贮存液零下20 ℃冷冻保存。
32.其中,所述dna1、dna2、dna3、cdna1、cdna2、cdna3的序列结构如下表所示,均是由30个polya尾加上不同链长的互补片段的核苷酸构成,其二嵌段的结构尾部使用的polya尾比其他基团能够更好的附着在金颗粒表面,且比一般有机基团具有更好的生物相容性,并且合成的价格更加便宜,故该材料选择二嵌段的核苷酸序列。namesequence(5'-3')dna1agtctacgcaa(30)cdna1a(30)tgcgtagactdna2atgctaggagatcgatgctaa(30)cdna2a(30)tagcatcgatctcctagcatdna3agtctacgcaatgctaggagatcgatgctaa(30)
cdna3a(30)tagcatcgatctcctagcattgcgtagact
33.(5)dna-aunp偶联体的制备a、分别取步骤(2)的纯化后卫星金纳米颗粒溶液1 ml和步骤(3)中核金纳米颗粒溶液1 ml,按浓度比200:1向卫星金纳米颗粒溶液中加入步骤(4)中的dna1、dna2、dna3;向核金纳米颗粒溶液中加入互补的核苷酸序列cdna1、cdna2、cdna3振荡摇匀,超声10 min;b、然后加入ph为2的盐酸-柠檬酸缓冲液(按体积比1:50 = dna贮存液:aunp溶液),短暂的涡旋混合;c、室温孵育5 min后,加入400 mm hepes缓冲液(按体积比3:50=hepes缓冲液:aunp溶液)调制成中性;d、室温孵育10 min后离心纯化三次重悬于至10 nm hepes缓冲液中,得到偶联dna-aunp溶液避光4℃保存备用。
34.(6)核-卫星结构金纳米颗粒(即au
−
dna
−
au)的制备a、取步骤(5)的两种dna-aunp偶联溶液,置于磁力搅拌机上搅拌混合,逐滴加入1 m nacl溶液,待溶液由柔和的粉红色变为紫红色时停止加入,继续搅拌过夜;b、将所得的au
−
dna
−
au离心纯化三次后,重悬于10 mm hepes缓冲液中,避光4 ℃保存备用。
35.(7)核-卫星结构金纳米颗粒的表面改性a、取步骤(6)中所得的au
−
dna
−
au偶联组装体溶液,加入分子量为2000的10 μm短链巯基peg链10 μl,置于摇床振荡摇匀反应36 h;b、反应完成后,离心提纯重悬于10 mm hepes缓冲液中避光4℃保存。
36.为了说明核-卫星结构金纳米颗粒的有效组装,在步骤(7)反应结束后,取微量的组装好的核卫星结构的金纳米颗粒au
−
dna
−
au,通过紫外吸收光谱仪监测au
−
dna
−
au吸收峰与偶联之前的进行对比,如图4所示,通过放大的图谱可以清晰的看到偶联前的卫星金纳米颗粒的紫外最大吸收峰位置为518 nm,核金纳米颗粒的最大吸收峰位置为531 nm,通过dna偶联后形成的核-卫星结构金纳米颗粒(即au
−
dna
−
au)后,可以观察到au
−
dna
−
au的紫外最大吸收峰有明显的红移,这是因为卫星金纳米颗粒偶联上了核金纳米颗粒,从而形成了紧密的团簇核卫星体结构,这相比于偶联前颗粒的尺寸有较大的变化,故导致紫外吸收峰的红移量大大增加。
37.通过拍摄核-卫星结构金纳米颗粒au
−
dna
−
au的透射电子显微镜tem图,如图5所示,可以观察到卫星金纳米颗粒确实包覆在核金纳米颗粒表面,形成了紧密的团簇结构,且可以看到在金纳米颗粒表面附着了一层薄薄的透明胶质感的物体,也能说明dna序列和金纳米颗粒偶联成功,形成了核-卫星结构金纳米颗粒。
38.测试例1:核-卫星结构金纳米颗粒(即au
−
dna
−
au)加热实验(1)au
−
dna
−
au加热实时紫外峰位置监测a、将实例1中制得的核-卫星结构金纳米颗粒溶液浓缩至20 nm,置于外源紫外光谱仪的检测槽内,连接好光纤和电脑;b、在检测槽下安装加热平台,控制温度以1 ℃/min的速率进行加热;c、实时监测紫外吸收峰的变化。
39.(2)au
−
dna
−
au稳定性实验
a、将实施例1中制得的核-卫星结构金纳米颗粒溶液浓缩至20 nm,置于外源紫外光谱仪的检测槽内,连接好光纤和电脑;b、在检测槽下安装加热平台,控制温度以1 ℃/min的速率进行加热;c、待到紫外吸收峰位置发生变化后停止加热,自然冷却到室温;d、然后待紫外吸收峰恢复到原来位置时,按照b步骤重新加热,重复以上实验三次,观察紫外吸收峰位置的动态变化。
40.如图6所示,当温度上升至58℃时,可以观察到实时紫外吸收峰的位置由534 nm降为530 nm左右,这是因为温度已经达到核苷酸序列的解链温度,核-卫星结构金纳米颗粒由聚集态分散成为核金纳米颗粒和卫星金纳米颗粒;如图7所示,在多次加热和冷却后,该au
−
dna
−
au的结构依然保持良好的初始状态,故可以说明该复合材料能够稳定性十分优异。
41.测试例2:核-卫星结构金纳米颗粒暗场散射实验将核-卫星结构金纳米颗粒固定在玻璃基板上,通过暗场显微镜观察其散射照片,并在外源激光激发下,监测光照前后的spr信号峰位置的变化,其具体过程如下:a、ito玻璃处理,将整块的ito玻璃切割成4 cm*1 cm的玻璃片,依次用洗洁精,丙酮,乙醇,超纯水超声清洗各1h,最后用氮气吹干;b、配置浓度为4%的巯基硅烷化试剂,取0.2 ml kh-580,用乙醇稀释至5 ml,超声5 min,将洗净的ito玻璃片置于其中浸泡2h;c、取出泡好的玻璃片用超纯水清洗掉多余的乙醇和kh-580,置于烘箱2 h,然后取出处理过后的ito玻璃片密封保存备用;d、取核-卫星结构金纳米颗粒溶液0.2 ml,用超纯水稀释至5 ml,然后将修饰好的ito玻璃片置于其中,浸泡0.5 h后,用超纯水冲洗掉未吸附的核-卫星结构金纳米颗粒,最后用氮气吹干,置于暗场显微镜操作台上;e、在暗场显微镜下观察颗粒的散射情况,并监测未用激发光时的spr峰位置;f、使用外源激光激发后,在暗场显微镜下观察颗粒的散射情况,并监测激发光时的spr峰位置的变化。
42.如图8所示,激光激发前的暗场显微镜可以观察到核-卫星结构金纳米颗粒聚集态时的散射光为淡黄色,通过外源激光激发后,暗场照片显示为浅绿色,这是因为在外源激光激发后,核-卫星结构金纳米颗粒解链,从而导致散射光的变化;此外,通过监测光照前后的spr峰位移的变化,如图9所示,可以看到激发光照之前,核-卫星结构金纳米颗粒的spr散射峰在620 nm,激发光照之后,颗粒的spr散射峰为580 nm,可以清晰地看到蓝移量为40 nm左右。
43.上述实验表明二嵌段dna连接的核-卫星结构金纳米颗粒(au
−
dna
−
au)的材料可以很好应用于光存储领域,其表面的等离子体激元spps能量能够被约束在远小于光波波长的空间尺度内,所以该复合材料相对于传统的光存储介质有更强的近场电场增强的特性,从而能够突破聚焦光束衍射的限制;并且该复合材料具有灵敏的spr峰位移的变化和对光信息的重现性能够做到可视化相对于传统的光存储介质对数据的读写,输入和输出更加的准确;此外,本发明制备的核-卫星结构金纳米颗粒又具有良好的光热特性,且金纳米颗粒的生物相容性十分优异,而且对生物的毒性低,易代谢,所以该材料在生物传感领域可用于光热治疗中肿瘤细胞的具体死亡时的精确温度,从而能够更好的指导光热治疗时最佳的有效
杀伤温度,对正常细胞减少光热治疗时带来的副作用。
44.上述仅为本发明的优选实施例,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。
技术特征:1.一种热敏可擦写等离子激元纳米生物存储器,其特征在于,所述纳米存储器包括透明基底及核-卫星结构金纳米颗粒,所述核-卫星结构金纳米颗粒固定在透明基底上;所述核-卫星结构金纳米颗粒内层为核金纳米颗粒,外层为卫星金纳米颗粒,所述核金纳米颗粒和卫星金纳米颗粒分别通过二嵌段互补dna片段进行修饰;在所述核金纳米颗粒上采用不同链长核苷酸序列连接相应数量的卫星金纳米颗粒使形成核-卫星纳米团簇结构的核-卫星结构金纳米颗粒,通过改变互补dna片段序列的长度实现解链温度的精准调控。2.根据权利要求1所述的一种热敏可擦写等离子激元纳米生物存储器,其特征在于,所述二嵌段互补dna片段的一端为polya或polyt结构,链长为5
−
30 bp;所述二嵌段互补dna片段另一端为随机可互补的dna序列,链长为10
−
60 bp;所述解链温度的调控范围为48-65℃。3.根据权利要求1所述的一种热敏可擦写等离子激元纳米生物存储器,其特征在于,所述核金纳米颗粒直径为40-100nm,所述卫星金纳米颗粒直径为10-40nm。4.根据权利要求3
ꢀꢀ
所述的一种热敏可擦写等离子激元纳米生物存储器,其特征在于,所述核金纳米颗粒和卫星金纳米颗粒通过调节ph的方法进行偶联,设置该ph为1-3。5.根据权利要求1所述的一种热敏可擦写等离子激元纳米生物存储器,其特征在于,所述核-卫星结构金纳米颗粒表面修饰以短链巯基peg链,所述短链巯基peg链链长为200
−
10000。6.根据权利要求1-5任一项所述的一种热敏可擦写等离子激元纳米生物存储器,其特征在于,所述透明基底材料为玻璃、ito玻璃、fto玻璃、亚克力、石英、聚苯乙烯、聚甲基丙烯酸甲酯、聚碳酸酯中的任意一种。7.权利要求1-6任一项所述热敏可擦写等离子激元纳米生物存储器的制备方法,其特征在于,包括如下步骤:s1、将氯金酸水溶液在油浴锅中加热至150℃,快速加入还原剂柠檬酸钠溶液,并大力搅拌得到种子溶液;s2、将步骤s1所得的种子溶液进行离心提纯,得到卫星金纳米颗粒溶液;s3、将步骤s2所得的溶液稀释,逐步加入反应物氯金酸水溶液和还原剂柠檬酸钠溶液,反应结束,离心提纯得到核金纳米颗粒溶液;s4、dna贮存液的配制:将合成的dna片段以及与之互补的互补dna片段,分别配制成dna贮存液,备用;s5、取步骤s2所得的卫星金纳米颗粒,向所述卫星金纳米颗粒中加入步骤s4中所述dna片段,振荡摇匀,通过调节ph的方法进行偶联分别得到dna-aunp偶联卫星金纳米颗粒;取步骤s3所得的核金纳米颗粒,向所述核金纳米颗粒中加入步骤s4中所述的互补dna片段,振荡摇匀,通过调节ph的方法进行偶联得到dna-aunp偶联核金纳米颗粒;s6、将步骤s5所得的dna-aunp偶联卫星金纳米颗粒和dna-aunp偶联核金纳米颗粒进行混合组装,得到核-卫星结构金纳米颗粒。8.根据权利要求7所述的一种热敏可擦写等离子激元纳米生物存储器制备方法,其特征在于,所述步骤s4中,所述dna片段与互补dna的核苷酸序列如下表所示:
。9.根据权利要求7所述的一种热敏可擦写等离子激元纳米生物存储器制备方法,其特征在于,取所述步骤s6得到的核-卫星结构金纳米颗粒,加入短链的巯基peg链,对核-卫星金纳米颗粒进行表面改性。10.根据权利要求7所述的一种热敏可擦写等离子激元纳米生物存储器制备方法,其特征在于,所述步骤s1中的氯金酸水溶液浓度为28 mm,柠檬酸钠水溶液的浓度为40 mm;所述步骤s3中的氯金酸水溶液的浓度为2.8 mm,柠檬酸钠水溶液的质量分数为1%;所述步骤s5中,向所述卫星金纳米颗粒中加入所述dna片段的浓度比为,dna片段:卫星金纳米颗粒=200:1;向所述核金纳米颗粒中加入所述互补dna片段的浓度比为,核苷酸序列:卫星金纳米颗粒=200:1。
技术总结本发明公开了一种热敏可擦写等离子激元纳米生物存储器及其制备方法,属于纳米光存储材料及生物传感科学技术领域,该热敏可擦写等离子激元纳米存储器是采用不同链长、具有PolyA或PolyT末端的互补二嵌段DNA作为偶联分子,通过DNA特异性杂交连接小尺寸卫星纳米颗粒和大尺寸核颗粒而成。基于金纳米颗粒良好的光热效果和短链的核苷酸序列所具有的较低的解链温度使形成的核-卫星结构金纳米颗粒具有良好的重现性,使得该热敏可擦写等离子激元纳米存储器具有良好的光存储特性,能够并行提供输入和输出以及数据的传输,且通过优异的灵敏度和对光信息的重现性能够做到可视化,相对于传统的光存储介质对数据的读写,输入和输出更加的准确。加的准确。加的准确。
技术研发人员:张磊 江志涛 刘官 王康 范曲立 沈晶晶
受保护的技术使用者:南京邮电大学
技术研发日:2022.04.25
技术公布日:2022/7/5