超声波指纹识别模组及其制作方法、显示面板、显示装置与流程

allin2023-03-24  130



1.本发明涉及指纹识别技术领域,特别涉及一种超声波指纹识别模组及其制作方法、显示面板、显示装置。


背景技术:

2.随着科学技术的不断发展,指纹识别技术已经逐渐应用到人们的日常生活中。指纹识别技术可通过比较不同指纹的细节特征点来进行鉴别,从而达到身份识别的功能。通常,指纹识别技术可分为光学式指纹识别技术、硅芯片式指纹识别技术和超声波式指纹识别技术。
3.目前,超声波式指纹识别技术是各大厂商热门的研究方向。超声波指纹识别结构主要为三叠层结构,包括发射电极、接收电极以及位于两者之间的压电材料层。当对发射电极和接收电极加载驱动电压时,压电材料层受到电压激发产生逆压电效应,其产生震动并向外发射第一超声波。该第一超声波接触手指后,被手指反射回第二超声波。由于指纹包括谷和脊,因此被指纹反射回到压电材料层的第二超声波震动强度有差异,此时,压电材料层可将第二超声波转换成电压信号,接收电极接收该压电信号并传输给指纹计算模块,根据该电压信号判断指纹中谷和脊的位置,从而实现指纹识别的功能。


技术实现要素:

4.本发明实施例提供了一种超声波指纹识别模组及其制作方法、显示面板、显示装置,可以将压电材料层向外发射发的超声波准确聚焦在目标指纹上,提升指纹反射的信号量,从而提高对比度和信噪比。
5.本发明实施例提供的一种超声波指纹识别模组,包括:衬底基板,位于所述衬底基板上的接收电极层,位于所述接收电极层背离所述衬底基板一侧的微透镜阵列结构,位于所述微透镜阵列结构背离所述衬底基板一侧的压电材料层,以及位于所述压电材料层背离所述衬底基板一侧的发射电极层;其中,所述压电材料层随所述微透镜阵列结构的形貌设置,所述发射电极层随所述压电材料层的形貌设置。
6.可选地,在本发明实施例提供的上述超声波指纹识别模组中,所述微透镜阵列结构包括阵列排列的多个微透镜,所述衬底基板背离所述微透镜的表面为触摸面,所述触摸面具有与所述微透镜一一对应的多个超声聚焦点,所述微透镜背离所述衬底基板的表面上的任意一点与对应的所述超声聚焦点之间的距离相等。
7.可选地,在本发明实施例提供的上述超声波指纹识别模组中,所述微透镜背离所述衬底基板的表面上的任意一点与对应的所述超声聚焦点之间的距离、所述微透镜的口径和所述微透镜的拱高,满足如下关系:
[0008][0009]
其中,r为所述微透镜背离所述衬底基板的表面上的任意一点与对应的所述超声
聚焦点之间的距离,d为所述微透镜的口径,h为所述微透镜的拱高。
[0010]
可选地,在本发明实施例提供的上述超声波指纹识别模组中,还包括位于所述发射电极层背离所述衬底基板一侧的反射层。
[0011]
可选地,在本发明实施例提供的上述超声波指纹识别模组中,还包括及位于所述接收电极层和所述微透镜阵列之间的第一缓冲层。
[0012]
可选地,在本发明实施例提供的上述超声波指纹识别模组中,所述接收电极层包括与所述微透镜阵列对应的多个接收电极,所述压电材料层为整面设置的结构,所述发射电极层为整面设置的结构,或所述发射电极层包括与所述接收电极对应的多个发射电极。
[0013]
可选地,在本发明实施例提供的上述超声波指纹识别模组中,还包括位于所述衬底基板和所述接收电极层之间的指纹识别电路层,所述指纹识别电路层包括与所述接收电极一一对应的多个指纹识别电路,所述指纹识别电路与对应的所述接收电极电连接。
[0014]
可选地,在本发明实施例提供的上述超声波指纹识别模组中,所述微透镜阵列的材料包括感光树脂。
[0015]
可选地,在本发明实施例提供的上述超声波指纹识别模组中,所述压电材料层的材料包括聚偏二氟乙烯、聚偏二氟乙烯三氟乙烯、聚氯乙烯、聚碳酸酯、聚偏氟乙烯、聚甲基丙、烯酸甲酯或聚四氟乙烯。
[0016]
相应地,本发明实施例还提供了一种显示面板,包括显示模组和本发明实施例提供的上述任一项所述的超声波指纹识别模组。
[0017]
相应地,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述显示面板。
[0018]
相应地,本发明实施例还提供了一种超声波指纹识别模组的制作方法,用于制作本发明实施例提供的上述任一项所述的超声波指纹识别模组,所述制作方法包括:
[0019]
在衬底基板上形成接收电极层;
[0020]
在所述接收电极层背离所述衬底基板的一侧形成微透镜阵列结构;
[0021]
在所述微透镜阵列结构背离所述衬底基板的一侧形成压电材料层;
[0022]
在所述压电材料层背离所述衬底基板的一侧形成发射电极层;其中,所述压电材料层随所述微透镜阵列结构的形貌设置,所述发射电极层随所述压电材料层的形貌设置。
[0023]
可选地,在本发明实施例提供的上述制作方法中,在所述接收电极层背离所述衬底基板的一侧形成微透镜阵列结构,具体包括:
[0024]
在所述接收电极层上形成感光树脂层;
[0025]
对所述感光树脂层进行曝光显影,形成图案化的微透镜图案;
[0026]
将形成有所述微透镜图案的结构放置于加热平台上,通过热回流工艺形成所述微透镜阵列结构。
[0027]
本发明实施例的有益效果如下:
[0028]
本发明实施例提供的一种超声波指纹识别模组及其制作方法、显示面板、显示装置,该超声波指纹识别模组,包括:衬底基板,位于衬底基板上的接收电极层,位于接收电极层背离衬底基板一侧的微透镜阵列结构,位于微透镜阵列结构背离衬底基板一侧的压电材料层,以及位于压电材料层背离衬底基板一侧的发射电极层;其中,压电材料层随微透镜阵列结构的形貌设置,发射电极层随压电材料层的形貌设置。本发明通过在压电材料层之前
设置一层微透镜阵列结构,这样压电材料层的形状可以随微透镜阵列结构的形貌设置,因此通过精确控制微透镜的口径和拱高,使得微透镜的球面圆心正好落在衬底基板的触摸面,这样压电材料层的球面圆心也正好落在衬底基板的触摸面,从而可以将压电材料层向外发射发的超声波准确聚焦在目标指纹上,提升指纹反射的信号量,从而提高对比度和信噪比。
附图说明
[0029]
图1为本发明实施例提供的超声波指纹识别模组的结构示意图;
[0030]
图2为图1中局部放大示意图;
[0031]
图3为本发明实施例提供的超声波指纹识别模组的具体结构示意图;
[0032]
图4为图3垂直翻转的结构示意图;
[0033]
图5为本发明实施例提供的一种超声波指纹识别模组的制作方法流程示意图;
[0034]
图6a-图6d为本发明实施例提供的一种超声波指纹识别模组的制作方法在执行每一步骤之后的结构示意图;
[0035]
图7为本发明实施例提供的一种超声波指纹识别模组的制作方法流程示意图;
[0036]
图8a-图8c为本发明实施例提供的一种超声波指纹识别模组的制作方法在执行每一步骤之后的结构示意图。
具体实施方式
[0037]
为了使本发明的目的,技术方案和优点更加清楚,下面结合附图,对本发明实施例提供的超声波指纹识别模组及其制作方法、显示面板、显示装置的具体实施方式进行详细地说明。应当理解,下面所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。并且在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。
[0038]
附图中各层薄膜厚度、大小和形状不反映超声波指纹识别模组的真实比例,目的只是示意说明本发明内容。
[0039]
本发明实施例提供了一种超声波指纹识别模组,如图1所示,包括:衬底基板1,位于衬底基板1上的接收电极层2,位于接收电极层2背离衬底基板1一侧的微透镜阵列结构3,位于微透镜阵列结构3背离衬底基板1一侧的压电材料层4,以及位于压电材料层4背离衬底基板1一侧的发射电极层5;其中,压电材料层4随微透镜阵列结构3的形貌设置,发射电极层5随压电材料层4的形貌设置。
[0040]
本发明实施例提供的上述超声波指纹识别模组,通过在压电材料层4之前设置一层微透镜阵列结构3,这样压电材料层4的形状可以随微透镜阵列结构3的形貌设置,即本发明实施例通过将压电材料层4设置成曲面结构,压电材料层4产生的超声波信号能够沿着远离发射电极层的方向进行汇聚。如此,通过对压电材料层4进行结构优化来实现超声波聚焦,使得超声波在交汇点处会发生谐振/共振,能够增强超声波信号的能量和强度,在噪声存在时识别度较高。从而,本发明实施例所提供的超声波指纹识别模组,能够以超声波聚焦形式进行指纹识别,能够实现指纹识别精度提升。具体地,如图2所示,图2为图1中的局部结构示意图,通过精确控制微透镜31的口径d和拱高h,使得微透镜31的球面圆心(超声聚焦点f)正好落在衬底基板1的触摸面11,这样压电材料层4的球面圆心也正好落在衬底基板1的
触摸面11,从而可以将压电材料层4向外发射发的超声波准确聚焦在目标指纹上,提升指纹反射的信号量,从而提高对比度和信噪比。
[0041]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图1和图2所示,微透镜阵列结构3包括阵列排列的多个微透镜31,衬底基板1背离微透镜31的表面为触摸面11,触摸面11具有与微透镜31一一对应的多个超声聚焦点f,微透镜31背离衬底基板1的表面上的任意一点与对应的超声聚焦点f之间的距离相等。这样可以将压电材料层向外发射的超声波准确聚焦在目标指纹上,提升指纹反射的信号量,从而提高对比度和信噪比。
[0042]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图2所示,根据勾股定理,r2=(d/2)2+(r-h)2,通过推导该等式,可知微透镜31背离衬底基板1的表面上的任意一点与对应的超声聚焦点之间的距离、微透镜的口径和微透镜的拱高,满足如下关系:
[0043][0044]
其中,r为微透镜31背离衬底基板1的表面上的任意一点与对应的超声聚焦点f之间的距离,d为微透镜31的口径,h为微透镜31的拱高。这样在制作微透镜阵列3时,可以精确控制微透镜31的口径d和微透镜31的拱高h,使得微透镜31的球面圆心(超声聚焦点f)正好落在衬底基板1的触摸面11。
[0045]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图1所示,微透镜阵列3的材料可以包括感光树脂。这样可以采用热回流工艺制作微透镜阵列,即利用感光树脂在光刻下形成图案化的微透镜区域,然后加热回流形成微透镜结构。
[0046]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图1所示,压电材料层4采用压电材料制作,其可被电压激发产生逆压电效应,也可被震动激发产生正压电效应。压电材料层4的材料可以包括但不限于聚偏二氟乙烯、聚偏二氟乙烯三氟乙烯、聚氯乙烯、聚碳酸酯、聚偏氟乙烯、聚甲基丙、烯酸甲酯、聚四氟乙烯、压电陶瓷或压电晶体等。
[0047]
在具体实施时,为了进一步提高压电材料层向外发射的超声波均能聚焦在目标指纹上,在本发明实施例提供的上述超声波指纹识别模组中,如图1所示,还包括位于发射电极层5背离衬底基板1一侧的反射层6。
[0048]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图1所示,还包括及位于接收电极层2和微透镜阵列3之间的第一缓冲层7。具体地,第一缓冲层7可以由氮化硅sinx、氧化硅siox或氮氧化硅sino组成,接收电极层2间隔地嵌入在第一缓冲层7中。
[0049]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图1所示,接收电极层2包括与微透镜阵列3对应的多个接收电极21,压电材料层4可以为整面设置的结构,发射电极层5也可以为整面设置的结构,或发射电极层5包括与接收电极21对应的多个发射电极。具体地,本发明实施例是以发射电极层5为整面设置的结构为例进行示意的,这样本发明通过图案化接收电极层2,而压电材料层4和发射电极层5均设置为整面设置的结构,可以在实现指纹识别功能的基础上简化膜层制作工艺。当然,压电材料层4和发射电极层5也可以图案化,根据实际需要进行选择设计。
[0050]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图3所示,还包括位于衬底基板1和接收电极层2之间的指纹识别电路层,指纹识别电路层包括与接收电极21一一对应的多个指纹识别电路8,指纹识别电路8与对应的接收电极21电连接。具体地,指纹识别电路8包括层叠设置在衬底基板1上的有源层81、栅绝缘层82、栅极83、层间介质层84、源极85和漏极86,源极85和漏极86分别与有源层81电连接,各指纹识别电路8的源极85与对应的接收电极21电连接,以将接收到的电信号传递至信号接收器,指纹识别电路8的漏极86电连接于电信号处理器,以将电信号传递至电信号处理器。
[0051]
在具体实施时,在本发明实施例提供的上述超声波指纹识别模组中,如图3所示,还包括:位于指纹识别电路81和接收电极层2之间的平坦层9,位于衬底基板1和指纹识别电路81之间的第二缓冲层11,以及与源极85和漏极86同层设置的绑定电极(pad)12。接收电极21通过贯穿平坦层9的过孔与源极85电连接。
[0052]
需要说明的是,本发明实施例提供的超声波指纹识别模组可以集成于柔性显示面板,也可以集成于不可发生形变的硬质显示面板。当超声波指纹识别模组集成于柔性显示面板时,本发明实施例提供的衬底基板1为柔性衬底(例如pi);当超声波指纹识别模组集成于硬质显示面板时,本发明实施例提供的衬底基板1为刚性衬底(例如玻璃)。
[0053]
具体地,如图4所示,图4为图3垂直翻转180
°
之后的结构,当超声波指纹识别模组处于工作状态时,发射电极层5和接收电极层2输入交变电压(ac电压)(例如:发射电极层5施加交流方波,接收电极层2接地)。那么,压电材料层4的两侧存在电压差,压电材料层4因逆压电效应会发生形变或者带动压电材料层4的上方和下方的膜层一起震动,从而可产生第一超声波,并且,第一超声波向远离压电材料层4的方向发射。超声波指纹识别模组发出的第一超声波在达到指纹30后被反射,将被反射的超声波作为第二超声波。第二超声波在达到压电材料层4后,会带动压电材料层4产生形变或者带动压电材料层4震动,由于正压电效应,会在压电材料层4的两侧产生电压差。此时,发射电极层5接地,接收电极层2可用于接收因正压电效应产生的电信号。由于手指的指纹30包括谷31和脊32,它们对于超声波的反射能力不同(谷31对超声波的反射能力较强),导致被谷31和脊32反射回来的第二超声波的强度不同。因此,不同位置的接收电极21可分别接收到对应位置的指纹30反射回来的第二超声波。电信号处理器可通过接收电极21接收到的电压判断该超声波识别谷31还是脊32反射的第二超声波,从而实现指纹识别。与光学指纹识别模组相比,超声波指纹识别模组在人手指有污渍等极端条件下识别效率和准确度更高。
[0054]
本发明实施例由于在压电材料层之前设置一层微透镜阵列结构,这样压电材料层的形状可以随微透镜阵列结构的形貌设置,因此通过精确控制微透镜的口径和拱高,使得微透镜的球面圆心正好落在衬底基板的触摸面,这样压电材料层的球面圆心也正好落在衬底基板的触摸面,从而可以将压电材料层向外发射发的超声波准确聚焦在目标指纹上,提升指纹反射的信号量,从而提高对比度和信噪比。
[0055]
基于同一发明构思,本发明实施例还提供了一种超声波指纹识别模组的制作方法,用于制作本发明实施例提供的上述超声波指纹识别模组,如图5所示,该制作方法可以包括:
[0056]
s501、在衬底基板上形成接收电极层;
[0057]
具体地,如图6a所示,在衬底基板1上形成依次层叠设置的第二缓冲层11、指纹识
别电路8、平坦层9、接收电极层2。
[0058]
s502、在接收电极层背离衬底基板的一侧形成微透镜阵列结构;
[0059]
具体地,如图6b所示,在接收电极层2背离衬底基板1的一侧形成第一缓冲层7,在第一缓冲层7背离衬底基板1的一侧形成微透镜阵列结构3。
[0060]
s503、在微透镜阵列结构背离衬底基板的一侧形成压电材料层;
[0061]
具体地,如图6c所示,在微透镜阵列结构3背离衬底基板1的一侧形成压电材料层4。
[0062]
s504、在压电材料层背离衬底基板的一侧形成发射电极层;其中,压电材料层随微透镜阵列结构的形貌设置,发射电极层随压电材料层的形貌设置;
[0063]
具体地,如图6d所示,在压电材料层4背离衬底基板1的一侧形成发射电极层5,在发射电极层5背离衬底基板1的一侧形成反射层6。
[0064]
在具体实施时,在本发明实施例提供的上述制作方法中,上述步骤s502在接收电极层背离衬底基板的一侧形成微透镜阵列结构,如图7所示,具体可以包括:
[0065]
s701、在接收电极层上形成感光树脂层;
[0066]
具体地,如图8a所示,在第一缓冲层7上形成感光树脂层3”。
[0067]
s702、对感光树脂层进行曝光显影,形成图案化的微透镜图案;
[0068]
具体地,如图8b所示,对感光树脂层3”进行曝光显影,形成图案化的微透镜图案3';微透镜图案3可以为但不限于矩形、圆形或长条形。
[0069]
s703、将形成有微透镜图案的结构放置于加热平台上,通过热回流工艺形成微透镜阵列结构;
[0070]
具体地,如图8c所示,将形成有微透镜图案3'的结构放置于加热平台上,通过热回流工艺形成微透镜阵列结构。通过选择感光树脂材料和控制热回流工艺的温度和加热时间来精确控制微透镜的口径d和拱高h,使得微透镜的球面圆心正好落在衬底基板1的触摸面。
[0071]
需要说明的是,在本发明实施例提供的上述超声波指纹识别模组的制作方法中,在制作各膜层时,会采用相应地构图工艺,该构图工艺可只包括光刻工艺,或,可以包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。在具体实施时,可根据本发明中所形成的结构选择相应的构图工艺。
[0072]
基于同一发明构思,本发明实施例还提供了一种显示面板,包括本发明实施例提供的上述任一种超声波指纹识别模组。
[0073]
本发明实施例提供的所述显示面板可以是柔性显示面板或不可发生形变的硬质显示面板。
[0074]
基于同一发明构思,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述显示面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述超声波指纹识别模组的实施例,重复之处不再赘述。
[0075]
本发明实施例提供的一种超声波指纹识别模组及其制作方法、显示面板、显示装置,该超声波指纹识别模组,包括:衬底基板,位于衬底基板上的接收电极层,位于接收电极层背离衬底基板一侧的微透镜阵列结构,位于微透镜阵列结构背离衬底基板一侧的压电材
料层,以及位于压电材料层背离衬底基板一侧的发射电极层;其中,压电材料层随微透镜阵列结构的形貌设置,发射电极层随压电材料层的形貌设置。本发明通过在压电材料层之前设置一层微透镜阵列结构,这样压电材料层的形状可以随微透镜阵列结构的形貌设置,因此通过精确控制微透镜的口径和拱高,使得微透镜的球面圆心正好落在衬底基板的触摸面,这样压电材料层的球面圆心也正好落在衬底基板的触摸面,从而可以将压电材料层向外发射发的超声波准确聚焦在目标指纹上,提升指纹反射的信号量,从而提高对比度和信噪比。
[0076]
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

技术特征:
1.一种超声波指纹识别模组,其特征在于,包括:衬底基板,位于所述衬底基板上的接收电极层,位于所述接收电极层背离所述衬底基板一侧的微透镜阵列结构,位于所述微透镜阵列结构背离所述衬底基板一侧的压电材料层,以及位于所述压电材料层背离所述衬底基板一侧的发射电极层;其中,所述压电材料层随所述微透镜阵列结构的形貌设置,所述发射电极层随所述压电材料层的形貌设置。2.根据权利要求1所述的超声波指纹识别模组,其特征在于,所述微透镜阵列结构包括阵列排列的多个微透镜,所述衬底基板背离所述微透镜的表面为触摸面,所述触摸面具有与所述微透镜一一对应的多个超声聚焦点,所述微透镜背离所述衬底基板的表面上的任意一点与对应的所述超声聚焦点之间的距离相等。3.根据权利要求2所述的超声波指纹识别模组,其特征在于,所述微透镜背离所述衬底基板的表面上的任意一点与对应的所述超声聚焦点之间的距离、所述微透镜的口径和所述微透镜的拱高,满足如下关系:其中,r为所述微透镜背离所述衬底基板的表面上的任意一点与对应的所述超声聚焦点之间的距离,d为所述微透镜的口径,h为所述微透镜的拱高。4.根据权利要求1-3任一项所述的超声波指纹识别模组,其特征在于,还包括位于所述发射电极层背离所述衬底基板一侧的反射层。5.根据权利要求1-3任一项所述的超声波指纹识别模组,其特征在于,还包括及位于所述接收电极层和所述微透镜阵列之间的第一缓冲层。6.根据权利要求1-3任一项所述的超声波指纹识别模组,其特征在于,所述接收电极层包括与所述微透镜阵列对应的多个接收电极,所述压电材料层为整面设置的结构,所述发射电极层为整面设置的结构,或所述发射电极层包括与所述接收电极对应的多个发射电极。7.根据权利要求6所述的超声波指纹识别模组,其特征在于,还包括位于所述衬底基板和所述接收电极层之间的指纹识别电路层,所述指纹识别电路层包括与所述接收电极一一对应的多个指纹识别电路,所述指纹识别电路与对应的所述接收电极电连接。8.根据权利要求1-3任一项所述的超声波指纹识别模组,其特征在于,所述微透镜阵列的材料包括感光树脂。9.根据权利要求1-3任一项所述的超声波指纹识别模组,其特征在于,所述压电材料层的材料包括聚偏二氟乙烯、聚偏二氟乙烯三氟乙烯、聚氯乙烯、聚碳酸酯、聚偏氟乙烯、聚甲基丙、烯酸甲酯或聚四氟乙烯。10.一种显示面板,其特征在于,包括显示模组和根据权利要求1-9任一项所述的超声波指纹识别模组。11.一种显示装置,其特征在于,包括根据权利要求10所述的显示面板。12.一种超声波指纹识别模组的制作方法,其特征在于,用于制作如权利要求1-9任一项所述的超声波指纹识别模组,所述制作方法包括:在衬底基板上形成接收电极层;在所述接收电极层背离所述衬底基板的一侧形成微透镜阵列结构;
在所述微透镜阵列结构背离所述衬底基板的一侧形成压电材料层;在所述压电材料层背离所述衬底基板的一侧形成发射电极层;其中,所述压电材料层随所述微透镜阵列结构的形貌设置,所述发射电极层随所述压电材料层的形貌设置。13.根据权利要求12所述的制作方法,其特征在于,在所述接收电极层背离所述衬底基板的一侧形成微透镜阵列结构,具体包括:在所述接收电极层上形成感光树脂层;对所述感光树脂层进行曝光显影,形成图案化的微透镜图案;将形成有所述微透镜图案的结构放置于加热平台上,通过热回流工艺形成所述微透镜阵列结构。

技术总结
本发明实施例公开了一种超声波指纹识别模组及其制作方法、显示面板、显示装置,本发明通过在压电材料层之前设置一层微透镜阵列结构,这样压电材料层的形状可以随微透镜阵列结构的形貌设置,因此通过精确控制微透镜的口径和拱高,使得微透镜的球面圆心正好落在衬底基板的触摸面,这样压电材料层的球面圆心也正好落在衬底基板的触摸面,从而可以将压电材料层向外发射发的超声波准确聚焦在目标指纹上,提升指纹反射的信号量,从而提高对比度和信噪比。比。比。


技术研发人员:刘文渠 张锋 崔钊 孟德天 姚琪 吕志军 董立文 侯东飞 李禹桥 岳阳
受保护的技术使用者:京东方科技集团股份有限公司
技术研发日:2022.04.11
技术公布日:2022/7/5
转载请注明原文地址: https://www.8miu.com/read-7561.html

最新回复(0)