一种制冷热管复合型机柜空调系统及其控制方法与流程

allin2023-04-03  127



1.本发明涉及通信、电力、工业控制行业的机柜温控设备。具体涉及一种制冷/热管复合型机柜空调系统及其控制方法。


背景技术:

2.机柜空调在户外通信机柜、基站、蓄电池机柜、充电桩、工业电气控制柜等行业有着广泛的应用,目前国内外行业所使用的机柜空调主要由机柜外壳、压缩机、内循环风机、外循环风机、冷凝器、蒸发器、中隔板、制冷系统连接管路及控制部分组成。其工作原理:空调通电后,制冷系统内制冷剂的低压蒸气被压缩机吸入并压缩为高压蒸气后排至冷凝器,同时柜外风扇吸入的空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸气凝结为高压液体。高压液体经过节流装置后喷入蒸发器,并在相应的低压下蒸发,吸取周围的热量。同时柜内风扇使空气不断通过蒸发器的翅片进行热交换,并将放热后变冷的空气送向柜内。如此柜内空气不断循环流动,达到降低温度的目的。
3.由于机房、基站的显热负荷比大,而机柜空调是全年制冷运行的直接蒸发式空调系统,即使在外部环境温度很低时仍需继续运行压缩式制冷系统对机房内进行降温,造成全年的能耗高、运行费用多、制冷系统的启停损失大、机器寿命损耗、易发生故障。因此如果能利用室内外温差低成本为室内侧提供冷量(散热),将大幅度减小空调系统的全年能耗和运行成本,提升系统能效。应用热管技术的复合型空调就是一种利用室外低温空气为室内侧提供冷量的方法。但是,现有制冷热管复合型空调一般系统设计复杂,铜管支路多,大部分产品制冷和热管要两套独立的管路和换热器,材料成本高。因此,如何节约材料同时实现利用室外低温空气为室内侧提供冷量提高空调全年能效的目的,是本领域技术人员目前需要解决的技术问题。


技术实现要素:

4.本发明的目的是解决现有技术存在的以下问题:如何利用同一套换热器和管路构造的系统,在节约材料的同时能够高效地利用室外侧自然冷源,降低能耗,节约能源。
5.为解决现有技术存在的问题,本发明提供了一种制冷/热管复合型机柜空调系统及其控制方法,包括机柜外壳,机柜外壳内部设置有冷凝器、外循环风机、压缩机、蒸发器、内循环风机和节流可变机构,所述节流可变机构包括三通阀和电子膨胀阀,所述三通阀的进口通过管路连接冷凝器的出口,三通阀的一个出口由电子膨胀阀串联到蒸发器的进口,三通阀的另一个出口通过管路直接旁通到蒸发器的进口。
6.优选的,机柜外壳内部设置有制冷系统连接管路、控制器和四通阀,且制冷系统连接管路通过四通阀分别连接压缩机的排气口、冷凝器的进口、蒸发器的出口和压缩机的吸气口。
7.优选的,所述冷凝器的出口和蒸发器的进口通过节流可变机构管路连接。
8.优选的,所述四通阀和压缩机的排气口通过油分离器管路连接,油分离器的回油
口和压缩机通过回油毛细管连接。
9.优选的,所述四通阀和压缩机的吸气口通过气液分离器管路连接。
10.优选的,所述节流可变机构也可以是两段式的电子膨胀阀、可调开度的精密电动球阀等特殊阀件,还可以是电动球阀、电子膨胀阀等其他系统件按照等效形式连接。
11.优选的,所述蒸发器设置在机柜外壳内部最底端,其位置高度低于所述冷凝器和节流可变机构位置高度。
12.优选的,具体控制方法如下:
13.复合型机柜空调机组接收到启动指令自检完成后,通过传感器检测柜内温度tin和柜外环境温度tout,控制器计算柜内外环境温差δta=tin-tout。
14.当柜内温度tin≤柜内设定温度(目标温度)ts(如35℃)时,机组待机。
15.当柜内温度tin>柜内设定温度ts时,根据柜内外环境温差δta选择运行模式:
16.若柜内外环境温差δta较大,δta>δtmin(如20℃),则机组运行热管散热模式兼顾节能和机柜降温需求,直到柜内外环境温差变化到较小时,δta≤δtmin,热管散热模式无法满足机柜降温需求,此时机组切换为空调制冷模式,压缩机投入工作,节流机构节流降压,迅速降低柜内出风温度,使柜内发热负载可靠工作。
17.机组运行空调制冷模式后,直到柜内外环境温差变化到足够大时,δta>δtmax(如30℃),机组切换热管散热模式,此时内外侧温差足以满足机柜降温需求。
18.如此,机组控制模块根据内外环境温差δta智能选择运行模式,兼顾节能和柜内发热负载温度需求,直到柜内温度tin≤柜内设定温度ts时,机组待机。
19.(1)机组运行空调制冷模式时,四通阀的阀芯球位置在线圈励磁作用下转到下述状态:阀芯球两个通路一路经过油分离器连通压缩机排气口和冷凝器进口,另一路经过气液分离器连通蒸发器出口和压缩机吸气口,三通阀关闭旁通支路,连通电子膨胀阀所在支路,电子膨胀阀根据过热度打开节流作用适当的开度。压缩机运行,制冷剂的低压蒸气被压缩机吸入并压缩为高压蒸气后排至冷凝器,同时外循环风机吸入的空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸气凝结为高压液体,高压液体经过电子膨胀阀节流降压后喷入蒸发器,并在相应的低压下蒸发,吸取周围的热量升温后被压缩机再次吸入,同时内循环风机使空气不断通过蒸发器的翅片进行热交换,并将换热后变冷的空气送向柜内;
20.(2)机组运行热管散热模式时,四通阀的阀芯球位置在线圈励磁作用下复位到下述状态:阀芯球两个通路一路经过油分离器、气液分离器分别连通压缩机的排气口和吸气口,使之短接,另一路连通冷凝器进口和蒸发器出口,使冷凝器和蒸发器形成独立的热管自然循环系统,压缩机停止,三通阀关闭电子膨胀阀所在支路,打开旁通支路使整个节流可变机构无节流降压作用,局部阻力小,满足热管自然循环原理制冷剂沿程阻力小的要求,此时蒸发器内的制冷剂将不断吸热蒸发,气态制冷剂上升至冷凝器中冷凝放热成为冷凝液,并在重力作用下经过全开无节流作用的节流可变机构回流至蒸发器,完成一个热管自然循环,同时内循环风机使柜内空气不断通过蒸发器的翅片进行热交换,并将换热后变冷的空气送向柜内;外循环风机使柜外空气不断通过冷凝器的翅片进行吸热,并将换热后变热的空气排向柜外,如此往复进行,机组便处于有效的热管供冷状态,通过热管自然循环将柜内热量转移到柜外环境。
21.与现有技术相比,本发明的有益效果是:
22.该制冷/热管复合型机柜空调系统及其控制方法设置有四通阀、冷凝器、外循环风机、节流可变机构、三通阀、电子膨胀阀、压缩机、蒸发器和内循环风机,通过上述设计,使装置能通过自动控制系统,根据不同工况而实现热管系统、蒸气压缩制冷系统的分别运行,使系统始终运行在其不同工况下的节能模式,保证柜内温度在合理范围的同时,使得系统的运行成本降低,能源消耗减少,全年综合能效比提升,此外,本复合型机柜空调结构设计合理,管路简洁,节省材料成本;智能自控运行,运维便捷。
附图说明
23.图1为本发明空调制冷模式原理图;
24.图2为本发明热管散热模式原理图;
25.图3为本发明优选节流机构第一替代形式原理图;
26.图4为本发明优选节流机构第二替代形式原理图;
27.图5为本发明控制方法的流程示意图。
28.图中:1、四通阀;2、冷凝器;3、外循环风机;4、节流可变机构;5、三通阀;6、电子膨胀阀;7、压缩机;8、蒸发器;9、内循环风机;10、油分离器;11、回油毛细管;12、气液分离器。(图示中箭头代表制冷剂流向)
具体实施方式
29.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
30.实施例一
31.如图1-5所示,图示中,由以下部件装配而成:
32.[0033][0034]
装配说明:将冷凝器2、外循环风机3、节流可变机构4、三通阀5、电子膨胀阀6、压缩机7、蒸发器8和内循环风机9皆安装在机柜外壳内部,再将制冷系统连接管路、控制器和四通阀1安装在机柜外壳内部,将制冷系统连接管路通过四通阀1分别连接压缩机7的排气口、冷凝器2的进口、蒸发器8的出口和压缩机7的吸气口,再将三通阀5的进口通过管路连接冷凝器2的出口,三通阀5的一个出口由电子膨胀阀6串联到蒸发器8的进口,三通阀5的另一个出口通过管路直接旁通到蒸发器8的进口。
[0035]
实施例二
[0036]
如图1-5所示,图示中,由以下部件装配而成:
[0037][0038]
装配说明:将冷凝器2、外循环风机3、节流可变机构4、压缩机7、蒸发器8、内循环风机9、油分离器10和气液分离器12皆安装在机柜外壳内部,再将制冷系统连接管路、控制器和四通阀1安装在机柜外壳内部,将制冷系统连接管路通过四通阀1分别连接油分离器10的出气口、冷凝器2的进口、蒸发器8的出口和气液分离器12的进口,油分离器10的出气口和压缩机7的排气口通过管路连接,油分离器10的回油口和压缩机7通过回油毛细管11连接,气液分离器12的出口和压缩机7的吸气口通过管路连接,再将冷凝器2的出口和蒸发器8的进口通过节流可变机构4管路连接。
[0039]
机组从空调制冷模式切换为热管散热模式时,各部件动作时序为:节流机构4全关,机组制冷剂在压缩机7驱动下回收到冷凝器2中,一段时间t后,四通阀1的阀芯球位置从空调制冷状态切换为热管散热状态,压缩机7停止,节流可变机构4全开,内循环风机9、外循环风机3按热管散热负荷程序自动调节转速。上述回收制冷剂的时间t由控制模块根据热管散热模式的热负荷所需冷媒量智能控制。
[0040]
机组从热管散热模式切换为空调制冷模式时,各部件动作时序为:四通阀1的阀芯
球位置从热管散热状态切换为空调制冷状态,节流可变机构4复位后按空调制冷逻辑开到初始开度,内循环风机9、外循环风机3根据热负荷由程序自动调节转速,压缩机7启动,此后机组各部件按空调制冷逻辑运行。
[0041]
图3是两段式电子膨胀阀,在空调制冷模式,此阀件在较小开度下调节,起到给制冷剂节流降压的作用;在热管散热模式,此阀件全开,通径合理,局部阻力极小,满足热管自然循环原理制冷剂沿程阻力小的要求。
[0042]
图4是可调开度的精密电动球阀,在空调制冷模式,此阀件在较小开度下通过结构上的刻槽起到精密调节制冷剂流量的作用;在热管散热模式,此阀件全开,满足热管自然循环原理制冷剂沿程阻力小的要求。
[0043]
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的仅为本发明的优选例,并不用来限制本发明,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

技术特征:
1.一种制冷/热管复合型机柜空调系统及其控制方法,包括机柜外壳,其特征在于:机柜外壳内部设置有冷凝器(2)、外循环风机(3)、压缩机(7)、内循环风机(9)和节流可变机构(4),所述节流可变机构(4)包括三通阀(5)和电子膨胀阀(6),所述三通阀(5)的进口通过管路连接冷凝器(2)的出口,三通阀(5)的一个出口由电子膨胀阀(6)串联到蒸发器(8)的进口,三通阀(5)的另一个出口通过管路直接旁通到蒸发器(8)的进口,所述蒸发器(8)设置在机柜外壳内部最底端,其位置高度低于所述冷凝器(2)和节流可变机构(4)的位置高度。2.根据权利要求1所述的一种制冷/热管复合型机柜空调系统及其控制方法,其特征在于:机柜外壳内部设置有制冷系统连接管路、控制器和四通阀(1),且制冷系统连接管路通过四通阀(1)分别连接压缩机(7)的排气口、冷凝器(2)的进口、蒸发器(8)的出口和压缩机(7)的吸气口。3.根据权利要求1所述的一种制冷/热管复合型机柜空调系统及其控制方法,其特征在于:所述冷凝器(2)的出口和蒸发器(8)的进口通过节流可变机构(4)管路连接。4.根据权利要求1、2所述的一种制冷/热管复合型机柜空调系统及其控制方法,其特征在于:所述四通阀(1)和压缩机(7)之间可以增加油分离器(10),所述四通阀(1)和压缩机(7)的排气口通过油分离器(10)管路连接,油分离器(10)的回油口和压缩机(7)通过回油毛细管(11)连接。5.根据权利要求1、2所述的一种制冷/热管复合型机柜空调系统及其控制方法,其特征在于:所述四通阀(1)和压缩机(7)之间可以增加气液分离器(12),所述四通阀(1)和压缩机(7)的吸气口通过气液分离器(12)管路连接。6.根据权利1所述的一种制冷/热管复合型机柜空调系统及其控制方法,其特征在于:节流可变机构(4)也可以是两段式的电子膨胀阀(6)、可调开度的精密电动球阀等特殊阀件,还可以是电动球阀和电子膨胀阀(6)等其他系统件按照等效形式连接。7.根据权利要求1-6任一所述的一种制冷/热管复合型机柜空调系统及其控制方法,其特征在于,具体控制方法如下:复合型机柜空调机组接收到启动指令自检完成后,通过传感器检测柜内温度tin和柜外环境温度tout,控制器计算柜内外环境温差δta=tin-tout。当柜内温度tin≤柜内设定温度(目标温度)ts(如35℃)时,机组待机。当柜内温度tin>柜内设定温度ts时,根据柜内外环境温差δta选择运行模式:若柜内外环境温差δta较大,δta>δtmin(如20℃),则机组运行热管散热模式兼顾节能和机柜降温需求,直到柜内外环境温差变化到较小时,δta≤δtmin,热管散热模式无法满足机柜降温需求,此时机组切换为空调制冷模式,压缩机(7)投入工作,节流机构节流降压,迅速降低柜内出风温度,使柜内发热负载可靠工作。机组运行空调制冷模式后,直到柜内外环境温差变化到足够大时,δta>δtmax(如30℃),机组切换热管散热模式,此时内外侧温差足以满足机柜降温需求。如此,机组控制模块根据柜内外环境温差δta智能选择运行模式,兼顾节能和柜内发热负载温度需求,直到柜内温度tin≤柜内设定温度ts时,机组待机。(1)机组运行空调制冷模式时,四通阀1的阀芯球位置在线圈励磁作用下转到下述状态:阀芯球两个通路一路经过油分离器(10)连通压缩机(7)排气口和冷凝器(2)进口,另一路经过气液分离器(12)连通蒸发器8出口和压缩机(7)吸气口,三通阀(5)关闭旁通支路,连
通电子膨胀阀(6)所在支路,电子膨胀阀(6)根据过热度打开节流作用适当的开度。压缩机(7)运行,制冷剂的低压蒸气被压缩机(7)吸入并压缩为高压蒸气后排至冷凝器(2),同时外循环风机(3)吸入的空气流经冷凝器(2),带走制冷剂放出的热量,使高压制冷剂蒸气凝结为高压液体,高压液体经过电子膨胀阀(6)节流降压后喷入蒸发器(8),并在相应的低压下蒸发,吸取周围的热量升温后被压缩机(7)再次吸入,同时内循环风机(9)使空气不断通过蒸发器(8)的翅片进行热交换,并将换热后变冷的空气送向柜内;(2)机组运行热管散热模式时,四通阀(1)的阀芯球位置在线圈励磁作用下复位到下述状态:阀芯球两个通路一路经过油分离器(10)、气液分离器(12)分别连通压缩机(7)排气口和吸气口,使之短接,另一路连通冷凝器(2)进口和蒸发器(8)出口,使冷凝器(2)和蒸发器(8)形成独立的热管自然循环系统,压缩机(7)停止,三通阀(5)关闭电子膨胀阀(6)所在支路,打开旁通支路使整个节流可变机构(4)无节流降压作用,局部阻力小,满足热管自然循环原理制冷剂沿程阻力小的要求,此时蒸发器(8)内的制冷剂将不断吸热蒸发,气态制冷剂上升至冷凝器(2)中冷凝放热成为冷凝液,并在重力作用下经过全开无节流作用的节流可变机构(4)回流至蒸发器(8),完成一个热管自然循环,同时内循环风机(9)使柜内空气不断通过蒸发器(8)的翅片进行热交换,并将换热后变冷的空气送向柜内;外循环风机(3)使柜外空气不断通过冷凝器(2)的翅片进行吸热,并将换热后变热的空气排向柜外,如此往复进行,机组便处于有效的热管供冷状态,通过热管自然循环将柜内热量转移到柜外环境。

技术总结
本发明涉及通信、电力、工业控制行业机柜温控设备技术领域,具体为一种制冷/热管复合型机柜空调系统及其控制方法,包括机柜外壳,机柜外壳内部设置有冷凝器、外循环风机、压缩机、蒸发器、内循环风机和节流可变机构,所述节流可变机构包括三通阀和电子膨胀阀。本发明通过自动控制系统,根据不同工况而实现热管系统、蒸气压缩制冷系统的自动运行,使系统始终运行在其不同工况下的节能模式,保证柜内温度在合理范围的同时,使得系统的运行成本降低,能源消耗减少,全年综合能效比提升。此外,本复合型机柜空调结构设计合理,管路简洁,节省材料成本;智能自控运行,运维便捷。运维便捷。运维便捷。


技术研发人员:李骏 郭世良 都文星 张伟 曾凯
受保护的技术使用者:苏州黑盾环境股份有限公司
技术研发日:2022.03.29
技术公布日:2022/7/5
转载请注明原文地址: https://www.8miu.com/read-8880.html

最新回复(0)