一种微凝胶包覆金属有机框架的多效协同关节润滑剂及其制备方法

allin2023-04-05  112



1.本发明属于生物医学工程领域,特别涉及一种微凝胶包覆金属有机框架的多效协同关节润滑剂及其制备方法。


背景技术:

2.骨关节炎是人们日常生活中最常见的关节疾病之一,主要表现为骨节疼痛,炎症以及行动不便等。根据世界卫生组织的统计,全球有超过3.5亿人受骨关节炎疾病的影响,其中约有44.7%的人在其一生中伴随着残疾的风险。骨关节炎产生的危害主要表现在对社会生产力和劳动力的破坏,巨额的财政支出以及个人经济财产损失。据统计,每年国家在骨关节炎医疗保健上的支出就超过了270亿美元。因此,发展早期骨关节炎预防与治疗策略具有重要意义。
3.尽管有多种因素可以诱导骨关节炎,但软骨润滑不足是导致骨关节炎形成和发展的重要因素之一。软骨界面之间的摩擦增大导致软骨表面产生较多的软骨碎片并伴随着软骨细胞和免疫细胞的异质化,随后激活免疫细胞分泌促炎因子并促使软骨细胞产生蛋白水解酶,造成软骨基质的降解,使摩擦进一步增大,这样就形成一个恶性负反馈循环,加速了骨关节炎的发展进程。因此,目前早期骨关节炎治疗策略主要围绕着软骨润滑增强以及抗炎药物递送展开。通过加入软骨润滑材料来减少软骨界面摩擦磨损可以实现关节软骨的修复;借助口服,注射以及纳米输运的方式进行关节内抗炎药物/润滑剂递送可有效降低炎症因子的表达。
4.近年来,将纳米材料药物递送与软骨润滑材料相结合的骨关节炎协同疗法受到了学者们的广泛关注,它主要通过在纳米多孔药物载体表面修饰软物质层,借助界面层与水分子的强偶极或氢键相互作用结合周围水分子形成坚韧的水化层来实现良好的减摩抗磨,同时多孔载体自身可以进行药物负载和递送,可实现软骨润滑增强和抗炎药物递送的集成,已成为目前一种主流的,优化的骨关节炎治疗策略。目前骨关节炎协同治疗中的自润滑药物载体主要围绕着多孔聚合物微/纳米球(例如微凝胶,改性壳聚糖颗粒以及明胶微球),无机纳米材料(例如中空/介孔二氧化硅)以及多孔金属氧化物(例如tio2纳米管)等。尽管这些自润滑药物载体可以实现润滑增强和药物递送,但由于比表面积较小,孔径尺寸较大,其难以实现高的药物负载率并且孔道在修饰过程中容易被堵塞。金属有机框架材料(metal-organic frameworks,mofs)是一种由金属离子与有机配体通过配位键自组装而成的一种纳米多孔材料,具有大的比表面积,可调的化学组成和孔径以及良好的物化性质可裁剪性,将其作为骨关节炎药物递送载体可实现高的药物负载率,定制化的分子包覆以及长效药物递送。
5.然而,由于mofs自身缺乏能结合周围水分子的界面软物质层,将mofs纳米颗粒作为水润滑添加剂难以实现良好的减摩抗磨性能。并且,由于骨关节炎部位微环境中存在温度升高,ph降低,以及活性氧物质(ros)升高等特征,发展响应性药物递送载体可有效提高
药物分子的利用率和靶向性,但目前实现负载抗炎药物mofs的响应性药物释放存在挑战。


技术实现要素:

6.本发明的目的是提供一种微凝胶包覆金属有机框架表面的多效协同关节润滑剂及其制备方法,利用mofs纳米颗粒大的比表面积装载抗炎药物,进一步将含乙烯基官能团分子作为单体,在交联剂和引发剂的作用下,通过自由基聚合在负载抗炎药物的mofs表面生长可控厚度的微凝胶层。与纯mofs相比,由于微凝胶层良好的水化能力和可逆的溶胀/坍缩特性,微凝胶生长的负载抗炎药物mofs作为水润滑添加剂可表现出良好的减摩抗磨性能和响应性的药物释放。
7.本发明的技术方案是:一种提升金属有机框架响应性和润滑性的方法,包括以下步骤:
8.步骤1:合成金属有机框架多孔材料;
9.步骤2:通过将金属有机框架多孔材料与微凝胶层以及抗炎药物相结合来提升金属有机框架响应性和润滑性。
10.本发明进一步的技术方案是:所述步骤1中包括以下子步骤:
11.步骤1.1:将金属离子盐和有机配体溶解或分散于去离子水中,金属离子盐首先通过磁力搅拌溶解于去离子水中,随后加入有机配体并在磁力搅拌下分散形成悬浮液;其中加入的金属离子与有机配体的摩尔比为1.51,金属离子盐的浓度为50mm~200mm,有机配体的浓度为33mm~133mm;
12.步骤1.2:将步骤1.1得到的悬浮液置于反应釜中,通过水热法合成mofs纳米颗粒。
13.本发明进一步的技术方案是:所述步骤2中,金属有机框架多孔材料与微凝胶层以及抗炎药物相结合的方式为两种,第一种为将微凝胶层生长在金属有机框架多孔材料的金属有机框架表面后,再负载抗炎药物;第二种为在金属有机框架多孔材料的孔道内负载抗炎药物,之后在金属有机框架多孔材料的金属有机框架表面生长微凝胶层。
14.本发明进一步的技术方案是:所述步骤2中,第一种结合方式包括以下子步骤:
15.步骤2.1:在金属有机框架多孔材料表面生长微凝胶层,包括以下子步骤:
16.步骤2.1.1:将步骤1得到的产物进行离心分离得到mofs纳米颗粒沉淀物;将n,n
’‑
二甲基甲酰胺加入mofs纳米颗粒沉淀物中进行洗涤,随后离心分离出沉淀物;
17.步骤2.1.2:将去离子水加入到步骤3.1.1中的沉淀物中进行洗涤,随后离心分离出沉淀物;
18.步骤2.1.3:将步骤3.1.2中离心分离出的mofs纳米颗粒并重新分散于去离子水中,得到mofs纳米颗粒分散液;
19.步骤2.1.4:对步骤3.1.3中得到的mofs纳米颗粒分散液进行稀释,并加入乙烯基单体并搅拌溶解,进一步加入n,n
’‑
亚甲基双丙烯酰胺并搅拌溶解,之后进行加热,加热过程中全程通入惰性气体,结束后加入2,2
’‑
偶氮二异丁基脒二盐酸盐后对整体进行密封,并在规定温度下进行搅拌反应,得到mofs@microgel纳米颗粒;
20.步骤2.1.5:将步骤3.1.4得到的mofs@microgel纳米颗粒进行离心分离得到沉淀物,分离后再次进行洗涤并重新分散于去离子水中,之后进行冷冻干燥,得到mofs@microgel粉体材料。
21.步骤2.2:生长微凝胶层的金属有机框架多孔材料负载非卤素抗炎药物,包括以下子步骤:
22.步骤2.2.1:将步骤3.1中得到的mofs@microgel粉体材料重新分散于新的去离子水中,随后加入非卤素抗炎药物nsaids,充分混合后得到负载nsaids的mofs@microgel;其中nsaids的加入量相对于金属离子的加入量为0.1~0.4g/g;
23.步骤3.2.2:将步骤3.2.1中得到的负载nsaids的mofs@microgel纳米颗粒进行离心分离得到沉淀物;分离后用去离子水洗涤并重新分散于去离子水中,并进行冷冻干燥,得到nsaids@mofs@microgel粉体材料。
24.本发明进一步的技术方案是:所述步骤2中,第二种结合方式包括以下子步骤:
25.步骤2.1:在金属有机框架多孔材料中负载非卤素抗炎药物,包括以下子步骤:
26.步骤2.1.1:将步骤1得到的产物进行离心分离得到mofs纳米颗粒沉淀物;将n,n
’‑
二甲基甲酰胺加入mofs纳米颗粒沉淀物中进行洗涤,随后离心分离出沉淀物;
27.步骤2.1.2:将去离子水加入到步骤3.1.1中的沉淀物中进行洗涤,随后离心分离出沉淀物;
28.步骤2.1.3:将步骤2.1.2中离心分离出的mofs纳米颗粒并重新分散于去离子水中,得到mofs纳米颗粒分散液;
29.步骤2.1.4:将步骤2.1.3中得到的mofs水分散液中加入非卤素抗炎药物nsaids,充分混合后得到负载nsaids的mofs;其中nsaids的加入量相对于金属离子的加入量为0.1~0.4g/g;
30.步骤2.2:在负载非卤素抗炎药物金属有机框架多孔材料表面生长微凝胶层,包括以下子步骤:
31.步骤2.2.1:将步骤3.1中得到的nsaids@mofs纳米颗粒进行离心分离,分离后用去离子水洗涤并重新分散于去离子水中,得到nsaids@mofs纳米颗粒分散液;
32.步骤2.2.2:将步骤3.2.1得到的nsaids@mofs纳米颗粒分散液进行稀释,并依次加入乙烯、n,n
’‑
亚甲基双丙烯酰胺进行搅拌溶解,之后进行通氩气加热,结束后加入2,2
’‑
偶氮二异丁基脒二盐酸盐后密封整体,并在规定温度下进行搅拌,得到nsaids@mofs@microgel纳米颗粒;
33.步骤2.2.3:将步骤3.2.2中得到的nsaids@mofs@microgel纳米颗粒进行离心分离得到沉淀物;分离后用去离子水洗涤并重新分散于去离子水中,并进行冷冻干燥,得到nsaids@mofs@microgel粉体材料。
34.本发明进一步的技术方案是:一种治疗骨关节炎的药物,所述药物为负载nsaids的mofs@microge粉体材料。
35.本发明进一步的技术方案是:一种多效协同关节润滑剂,将负载nsaids的mofs@microgel粉体材料溶于去离子水中,所配置的一定浓度的水分散液。
36.本发明进一步的技术方案是:一种多效协同关节润滑剂的制备方法,包括以下步骤:将最终得到的负载nsaids的mofs@microgel粉体材料1~20mg重新分散于1ml的去离子水中,配制浓度为1.0~20.0mg/ml的水分散液并将其作为多效协同关节润滑剂。
37.发明效果
38.本发明的技术效果在于:传统的多孔药物载体表面功能化需要进行多步化学修饰
或聚合,本发明通过一步聚合即可实现mofs的表面修饰,并且这些载体的药物包覆过程是通过修饰后负载,容易受到修饰层的阻碍,本发明通过修饰前负载将药物装载到mofs孔道中,其药物负载率可增加至23.4%;与纯水和纯mofs相比,生长pnipam微凝胶后的mofs的摩擦系数分别可降低49%和42.8%,磨损体积减小77.8%和62.8%;进一步负载双氯芬酸钠(diclofenac sodium,ds)抗炎药物,与37℃相比,45℃下ds@mofs@pnipam的药物释放量降低了27.7%,具有显著的热响应性药物释放特性。因此,本发明方法获得的多效协同关节润滑剂具有制备过程简单,药物负载率高,减摩抗磨性能好以及药物释放可控等优点。
附图说明
39.图1.mil-101(cr)表面生长pnipam微凝胶的示意图
40.图2.pnipam微凝胶生长前后的mil-101(cr)纳米颗粒的tem照片:(a)mil-101(cr),(b)mil-101(cr)@pnipam,标尺为500nm
41.图3:pnipam微凝胶生长前后的mil-101(cr)的摩擦系数和磨损体积
具体实施方式
42.为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本发明实施方式的组件可以以各种不同的配置来布置和设计。
43.因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
44.需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
45.应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
46.参见表1和图1-3,下面结合具体实施例对本发明的技术方案做进一步说明,但应当理解本发明的保护范围并不受具体实施例的限制。
47.本发明所采用的技术方案是,一种微凝胶包覆金属有机框架表面的多效协同关节润滑剂及其制备方法,首先通过水热法合成mofs纳米颗粒并装载抗炎药物,随后利用无皂乳液聚合将热响应性微凝胶生长在负载抗炎药物的mofs纳米颗粒上,并将其分散于水中配制成具有一定浓度的水分散液作为多效协同关节润滑剂
48.该方法具体是按照以下步骤进行的:
49.微凝胶包覆金属有机框架表面的多效协同关节润滑剂制备方法,其特征在于,包括以下步骤:
50.步骤一:将硝酸金属盐作为金属离子源,2-甲基咪唑、对苯二甲酸、均苯三酸等作为有机配体,通过水热法制备mofs纳米颗粒,包括以下子步骤:
51.子步骤一:将金属离子盐和有机配体溶解或分散于去离子水中,其中加入的金属
离子与有机配体的摩尔比为1.51,金属离子盐的浓度为50mm~200mm,有机配体的浓度为33mm~133mm,金属离子盐首先通过磁力搅拌溶解于去离子水中,随后加入有机配体并在磁力搅拌(》5h)下分散形成悬浮液;
52.子步骤二:将子步骤一得到的悬浮液置于反应釜中,通过水热法合成mofs纳米颗粒,其中水热反应的温度为150~200℃,反应时间为4~8h;
53.步骤二:mofs纳米颗粒表面生长微凝胶层(mofs@microgel),包括以下子步骤:
54.子步骤一:将步骤一子步骤二中反应结束后的产物进行离心分离得到mofs纳米颗粒沉淀物,其中离心分离的转速为11000~13000rpm,时间为10~20min;
55.子步骤二:将新的n,n
’‑
二甲基甲酰胺(dmf)加入到子步骤一中得到的mofs纳米颗粒沉淀物中进行洗涤,随后离心分离出沉淀物,其中离心分离的转速为11000~13000rpm,时间为10~20min;
56.子步骤三:将新的去离子水加入到子步骤二中得到的mofs纳米颗粒沉淀物中进行洗涤,随后离心分离出沉淀物,其中离心分离的转速为11000~13000rpm,时间为10~20min;
57.子步骤四:将子步骤三中得到的mofs纳米颗粒并重新分散于去离子水中,其中mofs纳米颗粒分散液的浓度为5mg/ml;
58.子步骤五:取1~2ml子步骤四得到的mofs纳米颗粒水分散液并加入到反应器中,并用30~60ml去离子水进行稀释,加入12.5mm~50mm的乙烯基单体并搅拌溶解,进一步加入1.25mm~5mm的n,n
’‑
亚甲基双丙烯酰胺并搅拌溶解,将反应器转移至加热炉中,从25℃升温至70~75℃并全程通氩气40~60min,结束后加入10mm2,2
’‑
偶氮二异丁基脒二盐酸盐100~400μl,密封瓶口,在70~75℃下搅拌反应2~8h;
59.子步骤六:将子步骤五得到的mofs@microgel纳米颗粒进行离心分离得到沉淀物,离心分离转速为11000~13000rpm,时间为10~20min;分离后用去离子水洗涤并重新分散于去离子水中,在冰箱中冷冻后置于冻干机中进行冷冻干燥得到mofs@microgel粉体材料。
60.步骤三:负载抗炎药物(non-steroidal anti-inflammatory drugs,nsaids)的mofs纳米颗粒表面生长微凝胶层(nsaids@mofs@microgel),包括以下子步骤:
61.子步骤一:将步骤二子步骤三中得到的mofs纳米颗粒重新分散于新的去离子水中,随后加入抗炎药物(nsaids)(例如双氯芬酸钠、吲哚美辛、阿司匹林),用超声波清洗器将分散液充分混合得到负载nsaids的mofs,其中nsaids的加入量相对于金属离子的加入量为0.1~0.4g/g,超声时间为20min,并搅拌12~18h;
62.子步骤二:将步骤一中得到的nsaids@mofs纳米颗粒进行离心分离,离心分离转速为11000~13000rpm,时间为10~20min;分离后用新的去离子水洗涤并重新分散于去离子水中,其中,nsaids@mofs纳米颗粒分散液的浓度为5mg/ml;
63.子步骤三:取1~2ml步骤二得到的nsaids@mofs纳米颗粒水分散液并加入到反应器中,并用30~60ml去离子水进行稀释,加入12.5mm~50mm的乙烯基单体并搅拌溶解,进一步加入1.25mm~5mm的n,n
’‑
亚甲基双丙烯酰胺并搅拌溶解,将反应器转移至加热炉中,从25℃升温至70~75℃并全程通氩气40~60min,结束后加入10mm2,2
’‑
偶氮二异丁基脒二盐酸盐100~400μl,密封瓶口,在70~75℃下搅拌反应2~8h;
64.子步骤四:将子步骤三得到的nsaids@mofs@microgel纳米颗粒进行离心分离得到
沉淀物,离心分离转速为11000~13000rpm,时间为10~20min;分离后用去离子水洗涤并重新分散于去离子水中,在冰箱中冷冻后置于冻干机中进行冷冻干燥得到nsaids@mofs@microgel粉体材料。
65.步骤四:多效协同关节润滑剂的制备,包括以下子步骤:
66.子步骤一:取步骤三子步骤四中得到的nsaids@mofs@microgel粉体材料1~20mg重新分散于1ml的去离子水中,配制浓度为1.0~20.0mg/ml的水分散液并将其作为多效协同关节润滑剂。
67.所述步骤二中子步骤二和子步骤三中的洗涤过程是借助超声或混匀仪进行洗涤。
68.所述步骤二中子步骤二的溶剂洗涤过程是用dmf连续洗涤三次以上来除去mofs孔内部残留有机配体以及反应副产物。
69.所述步骤二中子步骤三的溶剂洗涤过程是用去离子水连续洗涤三次以上来除去mofs孔内部残留的金属离子以及反应副产物。
70.所述步骤三中子步骤二的洗涤过程是通过去离子水连续洗涤三次以上来除去mofs表面物理吸附或过量的抗炎药物。
71.所述步骤二中子步骤六和步骤三中子步骤四的洗涤过程是通过去离子水连续洗涤三次以上除去反应体系中本体聚合产物以及未反应完的单体或交联剂。
72.所述步骤二中子步骤六和步骤三中子步骤四的冷冻干燥过程是在-50℃~-70℃的冻干机中干燥36~48h。
73.所述步骤四中子步骤一中的分散过程是在超声波清洗器中分散10~20min。
74.为验证该生长方法可用于改善mofs纳米颗粒水润滑性能以及实现响应性药物递送,我们选用了典型的cr-mofs(mil-101(cr))进行本次研究:
75.mil-101(cr)纳米颗粒的制备:
76.mil-101(cr):2.4g(150mm)九水合硝酸铬通过磁力搅拌溶于40ml去离子水中,随后加入0.66g(99mm)对苯二甲酸继续搅拌5h得到深蓝色悬浮物并转移至100ml反应釜中,从25℃升至180℃并保温4h得到mil-101(cr)纳米颗粒。如图2a所示,所制备的mil-101(cr)纳米颗粒呈球形并具有良好的单分散性,平均粒径为248.8nm。
77.mil-101(cr)@pnipam纳米颗粒的制备:
78.将上述方法合成出的mil-101(cr)原始分散液分成四等份,每一等份经离心(12000rpm,15min)、洗涤(dmf洗三次)、溶剂置换(去离子水置换三次)后重新分散于20ml去离子水中(分散液浓度为5mg/ml)。mil-101(cr)@pnipam的制备示意图如图1所示,取1ml mil-101(cr)分散液加入到100ml三口烧瓶中,并加入40ml去离子水进行稀释以及113.2mgnipam(25mm)和15.6mg bis(2.5mm)作为单体和交联剂,转移至油浴锅中从25℃升高至70℃并全程通氩气50min,随后加入100μl 10mm的v50作为引发剂,密封瓶口,在70℃下反应3h得到mil-101(cr)@pnipam纳米颗粒。如图2b所示,生长pnipam微凝胶后,mil-101(cr)表面裹上了一层聚合物,其厚度为23.9nm,mil-101(cr)@pnipam的平均粒径为273.5nm。
79.ds@mil-101(cr)@pnipam纳米颗粒的制备:
80.将上述方法合成出的mil-101(cr)原始分散液分成四等份,每一等份经离心(12000rpm,15min)、洗涤(dmf洗三次)、溶剂置换(去离子水置换三次)后重新分散于20ml去
离子水中,随后加入25mg双氯芬酸钠(ds)(0.1g/g),超声分散20min后,转移至磁力搅拌器中搅拌16h得到负载ds的mil-101(cr)纳米颗粒。将上述方法制备的ds@mil-101(cr)通过离心(12000rpm,15min)、洗涤(去离子水洗三次)后重新分散于20ml去离子水中(分散液浓度为5mg/ml),随后取1ml ds@mil-101(cr)分散液加入到100ml三口烧瓶中,并加入40ml去离子水进行稀释以及113.2mgnipam(25mm)和15.6mg bis(2.5mm)作为单体和交联剂,转移至油浴锅中从25℃升高至70℃并全程通氩气50min,随后加入100μl 10mm的v50作为引发剂,密封瓶口,在70℃下反应3h得到ds@mil-101(cr)@pnipam纳米颗粒。
81.摩擦学性能表征:
82.将10mgpnipam微凝胶生长前后的mil-101(cr)粉末重新分散于1ml去离子水中,获得浓度为10mg/ml的水分散液,摩擦对偶为zro2陶瓷。通过umt摩擦磨损试验机在球盘模式下进行往复摩擦测试来表征其摩擦学性能,并借助三维轮廓仪对其磨损体积进行测试。摩擦测试条件为:载荷:5n;频率:2hz;温度:25℃;行程:2mm;浓度:10mg/ml。如图3a所示,纯水的摩擦系数为0.55,加入mil-101(cr)后摩擦系数降至0.49,磨损体积降低29%,表明mofs纳米颗粒具有一定的减摩抗磨性能,进一步生长pnipam微凝胶后,其摩擦系数可以降至0.29,如图3b所示,磨损体积相对于纯mil-101(cr)降低了62.8%,因此,相对于纯水和mil-101(cr),生长pnipam微凝胶后的mil-101(cr)作为水润滑添加剂具有良好的减摩抗磨性能。
83.药物释放表征:
84.取7.5mg和15.0mg mil-101(cr)和mil-101(cr)@pnipam粉末分散于3ml去离子水中,并置于透析袋中(mw=3000),将透析袋转移至100ml广口瓶中,加入27ml去离子水进行不同温度下的震荡,在特定时间内,取出3ml分散液,并用紫外可见分光光度计对其释放量进行定量分析。从ds累计释放量可以看出,如表1所示,从30℃升至37℃时,ds@mil-101(cr)和ds@mil-101(cr)@pnipam的药物释放都增加了近一倍,进一步把温度升高至45℃,ds@mil-101(cr)的药物释放量基本不变,而ds@mil-101(cr)@pnipam的释放量降低了27.7%,这主要归因于45℃下pnipam微凝胶层的坍缩阻碍了ds从mil-101(cr)孔内向外部的扩散。
85.表1:pnipam微凝胶生长前后的ds@mil-101(cr)在不同温度下的累计药物释放量
86.t(℃)30℃37℃45℃ds@mil-101(cr)20.8%37.4%35.6%ds@mil-101(cr)@pnipam11.1%19.3%13.9%

技术特征:
1.一种提升金属有机框架响应性和润滑性的方法,其特征在于,包括以下步骤:步骤1:合成金属有机框架多孔材料;步骤2:通过将金属有机框架多孔材料与微凝胶层以及抗炎药物相结合来提升金属有机框架响应性和润滑性。2.如权利要求1所述的一种提升金属有机框架响应性和润滑性的方法,其特征在于,所述步骤1中包括以下子步骤:步骤1.1:将金属离子盐和有机配体溶解或分散于去离子水中,金属离子盐首先通过磁力搅拌溶解于去离子水中,随后加入有机配体并在磁力搅拌下分散形成悬浮液;其中加入的金属离子与有机配体的摩尔比为1.51,金属离子盐的浓度为50mm~200mm,有机配体的浓度为33mm~133mm;步骤1.2:将步骤1.1得到的悬浮液置于反应釜中,通过水热法合成mofs纳米颗粒。3.如权利要求1所述的一种提升金属有机框架响应性和润滑性的方法,其特征在于,所述步骤2中,金属有机框架多孔材料与微凝胶层以及抗炎药物相结合的方式为两种,第一种为将微凝胶层生长在金属有机框架多孔材料的金属有机框架表面后,再负载抗炎药物;第二种为在金属有机框架多孔材料的孔道内负载抗炎药物,之后在金属有机框架多孔材料的金属有机框架表面生长微凝胶层。4.如权利要求3所述的一种提升金属有机框架响应性和润滑性的方法,其特征在于,所述步骤2中,第一种结合方式包括以下子步骤:步骤2.1:在金属有机框架多孔材料表面生长微凝胶层,包括以下子步骤:步骤2.1.1:将步骤1得到的产物进行离心分离得到mofs纳米颗粒沉淀物;将n,n
’‑
二甲基甲酰胺加入mofs纳米颗粒沉淀物中进行洗涤,随后离心分离出沉淀物;步骤2.1.2:将去离子水加入到步骤3.1.1中的沉淀物中进行洗涤,随后离心分离出沉淀物;步骤2.1.3:将步骤3.1.2中离心分离出的mofs纳米颗粒并重新分散于去离子水中,得到mofs纳米颗粒分散液;步骤2.1.4:对步骤3.1.3中得到的mofs纳米颗粒分散液进行稀释,并加入乙烯基单体并搅拌溶解,进一步加入n,n
’‑
亚甲基双丙烯酰胺并搅拌溶解,之后进行加热,加热过程中全程通入惰性气体,结束后加入2,2
’‑
偶氮二异丁基脒二盐酸盐后对整体进行密封,并在规定温度下进行搅拌反应,得到mofs@microgel纳米颗粒;步骤2.1.5:将步骤3.1.4得到的mofs@microgel纳米颗粒进行离心分离得到沉淀物,分离后再次进行洗涤并重新分散于去离子水中,之后进行冷冻干燥,得到mofs@microgel粉体材料。步骤2.2:生长微凝胶层的金属有机框架多孔材料负载非卤素抗炎药物,包括以下子步骤:步骤2.2.1:将步骤3.1中得到的mofs@microgel粉体材料重新分散于新的去离子水中,随后加入非卤素抗炎药物nsaids,充分混合后得到负载nsaids的mofs@microgel;其中nsaids的加入量相对于金属离子的加入量为0.1~0.4g/g;步骤3.2.2:将步骤3.2.1中得到的负载nsaids的mofs@microgel纳米颗粒进行离心分离得到沉淀物;分离后用去离子水洗涤并重新分散于去离子水中,并进行冷冻干燥,得到
nsaids@mofs@microgel粉体材料。5.如权利要求3所述的一种提升金属有机框架响应性和润滑性的方法,其特征在于,所述步骤2中,第二种结合方式包括以下子步骤:步骤2.1:在金属有机框架多孔材料中负载非卤素抗炎药物,包括以下子步骤:步骤2.1.1:将步骤1得到的产物进行离心分离得到mofs纳米颗粒沉淀物;将n,n
’‑
二甲基甲酰胺加入mofs纳米颗粒沉淀物中进行洗涤,随后离心分离出沉淀物;步骤2.1.2:将去离子水加入到步骤3.1.1中的沉淀物中进行洗涤,随后离心分离出沉淀物;步骤2.1.3:将步骤2.1.2中离心分离出的mofs纳米颗粒并重新分散于去离子水中,得到mofs纳米颗粒分散液;步骤2.1.4:将步骤2.1.3中得到的mofs水分散液中加入非卤素抗炎药物nsaids,充分混合后得到负载nsaids的mofs;其中nsaids的加入量相对于金属离子的加入量为0.1~0.4g/g;步骤2.2:在负载非卤素抗炎药物金属有机框架多孔材料表面生长微凝胶层,包括以下子步骤:步骤2.2.1:将步骤3.1中得到的nsaids@mofs纳米颗粒进行离心分离,分离后用去离子水洗涤并重新分散于去离子水中,得到nsaids@mofs纳米颗粒分散液;步骤2.2.2:将步骤3.2.1得到的nsaids@mofs纳米颗粒分散液进行稀释,并依次加入乙烯、n,n
’‑
亚甲基双丙烯酰胺进行搅拌溶解,之后进行通氩气加热,结束后加入2,2
’‑
偶氮二异丁基脒二盐酸盐后密封整体,并在规定温度下进行搅拌,得到nsaids@mofs@microgel纳米颗粒;步骤2.2.3:将步骤3.2.2中得到的nsaids@mofs@microgel纳米颗粒进行离心分离得到沉淀物;分离后用去离子水洗涤并重新分散于去离子水中,并进行冷冻干燥,得到nsaids@mofs@microgel粉体材料。6.一种治疗骨关节炎的药物,其特征在于,所述药物为负载nsaids的mofs@microge粉体材料。7.一种多效协同关节润滑剂,其特征在于,将负载nsaids的mofs@microgel粉体材料溶于去离子水中,所配置的一定浓度的水分散液。8.一种如权利要求7所述的多效协同关节润滑剂的制备方法,其特征在于,包括以下步骤:将最终得到的负载nsaids的mofs@microgel粉体材料1~20mg重新分散于1ml的去离子水中,配制浓度为1.0~20.0mg/ml的水分散液并将其作为多效协同关节润滑剂。

技术总结
一种微凝胶包覆金属有机框架的多效协同关节润滑剂及其制备方法。本发明公开了一种MOFs表面生长微凝胶的方法来提升其水润滑性能以及响应性药物递送,获得了集良好减摩抗磨性能和可控药物释放的多效协同关节润滑剂。首先通过水热法合成尺寸可控且具有良好单分散性的MOFs纳米颗粒并负载非卤素抗炎药物(NSAIDs),进一步通过无皂乳液聚合将厚度可控的微凝胶生长在MOFs纳米颗粒表面得到负载NSAIDs的MOFs@microgel纳米颗粒。将MOFs@micorgel作为水润滑添加剂具有良好的减摩抗磨性能,进一步负载NSAIDs后,通过调控外界温度可实现MOFs@micorgel的热响应性药物递送。本发明制备过程简单,药物负载率高,减摩抗磨性能好以及药物释放可控,通过该方法获得的负载NSAIDs的MOFs@micorgel作为多效协同关节润滑剂具有良好的水润滑性能和可控药物释放。滑剂具有良好的水润滑性能和可控药物释放。滑剂具有良好的水润滑性能和可控药物释放。


技术研发人员:刘建喜 吴韦 钱勇 肖黎爽 刘维民
受保护的技术使用者:西北工业大学
技术研发日:2022.01.29
技术公布日:2022/7/5
转载请注明原文地址: https://www.8miu.com/read-9187.html

最新回复(0)