基于CdSrGO纳米敏感材料的超快正丙醇传感器及其制备方法

allin2023-04-06  57


基于cds/rgo纳米敏感材料的超快正丙醇传感器及其制备方法
技术领域
1.本发明属于半导体气体传感器技术领域,具体涉及一种基于cds/rgo纳米敏感材料的超快正丙醇传感器及其制备方法。


背景技术:

2.挥发性有机化合物(voc)是空气污染的重要来源,对人体健康可以产生严重的影响。正丙醇作为典型的voc气体,被广泛使用于涂料、化妆品、医药等多个行业生产中。然而,接触高浓度正丙醇气体会对人体造成巨大伤害,会使人出现呼吸道疾病,产生倦睡、头痛、中枢神经抑制等症状,可致癌。此外长期接触还会导致皮肤干燥、皲裂。中华人民共和国国家职业卫生标准gbz 2.1—2019规定了工作场所空气中正丙醇的职业接触限值,时间加权平均容许浓度(pc-twa)为200mg/m3(约82ppm),短时间接触容许浓度(pc-stel)为300mg/m3(约120ppm)。因此,开发出高性能、便捷、实时检测、稳定的正丙醇气体传感器,有着非常迫切的需求和重要的价值。
3.目前用于检测正丙醇的方法主要是气相色谱法。但该方法存在无法快速获得实时响应结果、检测设备昂贵、检测过程复杂、对人员要求高等缺点,限制了其在工程中的应用。而基于半导体材料的化学电阻气体传感器具有器件结构简单、制备方便、传感性能优良等优点,是一种很有应用前景的气体传感器。随着纳米科学与技术的发展,通过调控气敏材料的纳米结构提高材料的比表面积、增加活性位点,可以使气敏特性得到改善。另外,通过使两种纳米材料相结合,利用它们之间的协同效应及电阻调制作用可以使得气敏性能得到进一步的提升。
4.cds作为一种重要的ii-vi族化合物,广泛应用于光电探测、太阳能电池和光催化等领域,然而由于纯cds相对较高的工作温度和较差的导电性,阻碍了其在气敏领域的应用。石墨烯(rgo)具有二维的层状结构,独特的结构赋予了其特殊的性质,如具有高的载流子迁移率,大的机械强度和化学稳定性以及大的比表面积。因此,采用将石墨烯与金属硫化物复合的方法对cds材料进行进一步改性,是一种有效的策略,可降低气体传感器的工作温度及能耗,提升器件的灵敏度,并改善其选择性。


技术实现要素:

5.本发明的目的是提供一种基于cds/rgo纳米敏感材料的超快正丙醇传感器及其制备方法。
6.本发明利用cds/rgo为敏感材料,一方面以cds作为基底,材料本身的纳米棒结构引起的几何效应使电子能够沿着纳米棒的轴向直接传输,提供了有效的载流子传输路径,有利于传感器的快速响应和恢复;另一方面石墨烯的高迁移率增加了材料的活性中心,促进了气体分子在敏感材料表面吸附氧气的反应。且在n型cds和p型rgo的界面形成异质结,产生内置电场,加速电子传输,起到活性中心的作用,有利于气体吸附。这几方面的共同作
用大幅提高了气体与敏感材料的反应效率,进而提高了传感器的灵敏度。本发明所采用的市售管式结构传感器,制作工艺简单,体积小,利于工业上批量生产,因此具有重要的应用价值。
7.本发明所述的基于cds/rgo纳米敏感材料的超快正丙醇传感器,由外表面带有两条平行、环状且彼此分立的金电极的al2o3陶瓷管衬底、涂覆在al2o3陶瓷管外表面和金电极上的敏感材料、置于al2o3陶瓷管内的镍铬加热线圈组成;其特征在于:敏感材料为cds/rgo纳米敏感材料,且由如下步骤制备得到:
8.(1)首先将2~4mmol醋酸镉(cd(ch3coo)2·
2h2o)和8~10mmol硫脲(ch4n2s)添加到含有5~10ml去离子水和10~20ml乙二胺的反应容器中,搅拌20~30分钟形成均匀溶液;
9.(2)将步骤(1)获得的溶液转移到聚四氟乙烯内衬的不锈钢高压釜中,在160~180℃下反应8~10小时;自然冷却至室温后将反应产物离心,离心所得沉淀用去离子水和乙醇交替清洗数次,并在真空、60~80℃下干燥10~12小时,得到黄色cds粉末;
10.(3)将40~50mg步骤(2)得到的cds粉末和8~10ml去离子水在60~80℃水浴条件下搅拌,在搅拌的过程中将0.05~0.15ml、浓度为2.5mg/ml的石墨烯(go)水溶液滴加入上述溶液中;搅拌3~4小时直至水分蒸干,冷却至室温后收集固体,即为cds/rgo纳米敏感材料;
11.本发明所述的一种基于cds/rgo纳米敏感材料的超快正丙醇传感器的制备方法,其步骤如下:
12.①
取cds/rgo纳米敏感材料5~10mg置入研钵,再滴入1~2ml去离子水,充分混合并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面带有两条平行、环状且彼此分立的金电极的al2o3陶瓷管表面,形成10~30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极;al2o3陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm;
13.②
将步骤

得到的al2o3陶瓷管在50℃~80℃下烘烤30~45分钟,待敏感材料干燥后,将电阻值为30~40ω的镍铬加热线圈穿过al2o3陶瓷管内部作为加热丝,最后按照旁热式气敏元件进行焊接和封装,从而得到基于cds/rgo纳米敏感材料的正丙醇传感器。
14.本发明制备的基于cds/rgo纳米敏感材料的超快正丙醇传感器具有以下优点:
15.1、利用简单且环保的溶剂热法就可制备出cds/rgo纳米敏感材料,合成方法简单,成本低廉;
16.2、通过水浴法将cds与石墨烯复合,提高了对正丙醇的选择性,传感器的最佳工作温度低,响应速度极快,能够实现实时监测,且具有良好的稳定性和重复性,在正丙醇检测领域广阔的应用前景;
17.3、采用市售管式传感器,器件工艺简单,体积小,适于大批量生产。
附图说明
18.图1:实施例1制备的cds/rgo纳米敏感材料的sem形貌图,放大倍数为45000倍;
19.图2:实施例1制备的cds/rgo纳米敏感材料的tem形貌图,放大倍数为20000倍;
20.图3:对比例1、2、3和实施例1制备的cds/rgo纳米敏感材料的xrd图;
21.图4:对比例1、对比例2、对比例3和实施例1制备的传感器在工作温度为200℃时对不同气体的选择性对比图;
22.图5:实施例1制备的传感器在最佳工作温度200℃下灵敏度随着正丙醇浓度变化的实时曲线;
23.图6:实施例1制备的传感器在最佳工作温度200℃下对100ppm正丙醇的灵敏度重复性曲线。
24.如图1所示,本发明制备的cds/rgo纳米敏感材料为棒状结构,尺寸在50-500nm不等;
25.如图2所示,图中可以看出石墨烯附着在棒状cds上,两者紧密贴合;
26.如图3所示,在cds/rgo纳米敏感材料的xrd谱图中,可以观察到cds的特征峰,说明样品包含cds晶体。不能明显观察到石墨烯的峰是因为石墨烯的含量过少导致的;
27.如图4所示,实施例中1传感器均对正丙醇的灵敏度远高于对比例1、对比例2和对比例3,实施例1中传感器的选择性得到了极大的改善,此时实施例1中的器件对100ppm h2s的灵敏度为21.9;
28.如图5所示,当器件工作温度为200℃时,实施例1中传感器在最佳工作温度下,器件的灵敏度随着正丙醇浓度的增加而增大;
29.如图6所示,当器件工作温度为200℃时,实施例1中传感器在最佳工作温度下,器件对100ppm正丙醇的响应有良好的重复性。
30.注:器件的灵敏度被定义为其两金电极间在空气中电阻值(ra)与在被测气体中电阻值(rg)之比,即为s=ra/rg。在测试过程中,使用静态测试系统进行测试。将器件置于1l的气瓶内,向内注射一定量的待测气体,观察并记录其阻值变化,通过计算得到相应的灵敏度数值。
具体实施方式
31.对比例1:
32.1.首先将3mmol醋酸镉(cd(ch3coo)2·
2h2o)和9mmol硫脲(ch4n2s)添加到含有10ml去离子水和20ml乙二胺的烧杯中,并连续搅拌30分钟以形成均匀溶液;
33.2.将步骤(1)中获得的溶液转移到50ml聚四氟乙烯内衬不锈钢高压釜中,并放入烘箱中,烘箱在175℃下放置8小时。反应后,自然冷却至室温。然后,将产物离心并用去离子水和乙醇交替清洗数次,并在真空烘箱中在60℃下干燥12小时,最终得到黄色硫化镉粉末;
34.3.取步骤(2)中得到的硫化镉粉末10mg置入研钵,再滴入1ml去离子水,充分混合并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有两条平行、环状且彼此分立的金电极的al2o3陶瓷管表面,形成30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极,陶瓷管的长为4mm、外径为1.2mm、内径为0.8mm;
35.4.在红外灯下60℃烘烤30分钟,待敏感材料干燥后,将电阻值为38ω的镍铬加热线圈穿过al2o3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于纯cds纳米敏感材料的正丙醇传感器。
36.对比例2:
37.1.首先将3mmol醋酸镉(cd(ch3coo)2·
2h2o)和9mmol硫脲(ch4n2s)添加到含有10ml去离子水和20ml乙二胺的烧杯中,并连续搅拌30分钟以形成均匀溶液;
38.2.将步骤(1)中获得的溶液转移到50ml聚四氟乙烯内衬不锈钢高压釜中,并放入
烘箱中,烘箱在175℃下放置8小时。反应后,自然冷却至室温。然后,将产物离心并用去离子水和乙醇交替清洗数次,并在真空烘箱中在60℃下干燥12小时,最终得到黄色硫化镉粉末;
39.3.将50mg步骤(2)中得到的cds粉末和10ml去离子水加入到烧杯中,80℃水浴条件下搅拌3小时。在该过程中,将0.04ml的浓度为2.5mg/ml的go溶液滴加入上述溶液中。待冷却到室温后,收集沉淀,获得cds/rgo纳米敏感材料;
40.4.取步骤(3)中得到的cds/rgo纳米敏感材料10mg置入研钵,再滴入1ml去离子水,充分混合并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有两条平行、环状且彼此分立的金电极的al2o3陶瓷管表面,形成30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极,陶瓷管的长为4mm、外径为1.2mm、内径为0.8mm;
41.5.在红外灯下60℃烘烤30分钟,待敏感材料干燥后,将电阻值为38ω的镍铬加热线圈穿过al2o3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于cds/rgo纳米敏感材料的正丙醇传感器。
42.对比例3:
43.1.首先将3mmol醋酸镉(cd(ch3coo)2·
2h2o)和9mmol硫脲(ch4n2s)添加到含有10ml去离子水和20ml乙二胺的烧杯中,并连续搅拌30分钟以形成均匀溶液;
44.2.将步骤(1)中获得的溶液转移到50ml聚四氟乙烯内衬不锈钢高压釜中,并放入烘箱中,烘箱在175℃下放置8小时。反应后,自然冷却至室温。然后,将产物离心并用去离子水和乙醇交替清洗数次,并在真空烘箱中在60℃下干燥12小时,最终得到黄色硫化镉粉末;
45.3.将50mg步骤(2)中得到的cds粉末和10ml去离子水加入到烧杯中,80℃水浴条件下搅拌3小时。在该过程中,将0.2ml的浓度为2.5mg/ml的go溶液滴加入上述溶液中。待冷却到室温后,收集沉淀,获得cds/rgo纳米敏感材料;
46.4.取步骤(3)中得到的cds/rgo纳米敏感材料10mg置入研钵,再滴入1ml去离子水,充分混合并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有两条平行、环状且彼此分立的金电极的al2o3陶瓷管表面,形成30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极,陶瓷管的长为4mm、外径为1.2mm、内径为0.8mm;
47.5.在红外灯下60℃烘烤30分钟,待敏感材料干燥后,将电阻值为38ω的镍铬加热线圈穿过al2o3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于cds/rgo纳米敏感材料的正丙醇传感器。
48.实施例1:
49.1.首先将3mmol醋酸镉(cd(ch3coo)2·
2h2o)和9mmol硫脲(ch4n2s)添加到含有10ml去离子水和20ml乙二胺的烧杯中,并连续搅拌30分钟以形成均匀溶液;
50.2.将步骤(1)中获得的溶液转移到50ml聚四氟乙烯内衬不锈钢高压釜中,并放入烘箱中,烘箱在175℃下放置8小时。反应后,自然冷却至室温。然后,将产物离心并用去离子水和乙醇交替清洗数次,并在真空烘箱中在60℃下干燥12小时,最终得到黄色硫化镉粉末;
51.3.将50mg步骤(2)中得到的cds粉末和10ml去离子水加入到烧杯中,80℃水浴条件下搅拌3小时。在该过程中,将0.1ml的浓度为2.5mg/ml的go溶液滴加入上述溶液中。待冷却到室温后,收集沉淀,获得cds/rgo纳米敏感材料;
52.4.取步骤(3)中得到的cds/rgo纳米敏感材料10mg置入研钵,再滴入1ml去离子水,充分混合并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有两条平行、
环状且彼此分立的金电极的al2o3陶瓷管表面,形成30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极,陶瓷管的长为4mm、外径为1.2mm、内径为0.8mm;
53.5.在红外灯下60℃烘烤30分钟,待敏感材料干燥后,将电阻值为38ω的镍铬加热线圈穿过al2o3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于cds/rgo纳米敏感材料的正丙醇传感器。

技术特征:
1.一种基于cds/rgo纳米敏感材料的超快正丙醇传感器,由外表面带有两条平行、环状且彼此分立的金电极的al2o3陶瓷管衬底、涂覆在al2o3陶瓷管外表面和金电极上的敏感材料、置于al2o3陶瓷管内的镍铬加热线圈组成;其特征在于:敏感材料为cds/rgo纳米敏感材料,且由如下步骤制备得到,(1)首先将2~4mmol醋酸镉和8~10mmol硫脲添加到含有5~10ml去离子水和10~20ml乙二胺的反应容器中,搅拌20~30分钟形成均匀溶液;(2)将步骤(1)获得的溶液转移到聚四氟乙烯内衬的不锈钢高压釜中,在160~180℃下反应8~10小时;自然冷却至室温后将反应产物离心,离心所得沉淀用去离子水和乙醇交替清洗数次,并在真空、60~80℃下干燥10~12小时,得到黄色cds粉末;(3)将40~50mg步骤(2)得到的cds粉末和8~10ml去离子水在60~80℃水浴条件下搅拌,在搅拌的过程中将0.05~0.15ml、浓度为2.5mg/ml的石墨烯(go)水溶液滴加入上述溶液中;搅拌3~4小时直至水分蒸干,冷却至室温后收集固体,即为cds/rgo纳米敏感材料。2.如权利要求1所述的一种基于cds/rgo纳米敏感材料的超快正丙醇传感器,其特征在于:al2o3陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm。3.权利要求1或2所述的一种基于cds/rgo纳米敏感材料的超快正丙醇传感器的制备方法,其步骤如下:

取cds/rgo纳米敏感材料5~10mg置入研钵,再滴入1~2ml去离子水,充分混合并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面带有两条平行、环状且彼此分立的金电极的al2o3陶瓷管表面,形成10~30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极;

将步骤

得到的al2o3陶瓷管在50℃~80℃下烘烤30~45分钟,待敏感材料干燥后,将电阻值为30~40ω的镍铬加热线圈穿过al2o3陶瓷管内部作为加热丝,最后按照旁热式气敏元件进行焊接和封装,从而得到基于cds/rgo纳米敏感材料的正丙醇传感器。

技术总结
一种基于CdS/rGO纳米敏感材料的超快正丙醇传感器及其制备方法,属于半导体气体传感器技术领域。传感器由外表面带有两条平行、环状且彼此分立的金电极的Al2O3陶瓷管衬底、涂覆在Al2O3陶瓷管外表面和金电极上的CdS/rGO纳米敏感材料、置于Al2O3陶瓷管内的镍铬加热线圈组成。本发明利用棒状结构CdS/rGO纳米敏感材料的几何效应、石墨烯的高迁移率以及n型CdS和p型rGO的界面产生的异质结构进而有效地提高了传感器对于正丙醇的敏感特性。此外,本发明器件工艺简单,成本低廉,体积小,适于大批量生产,在检测正丙醇领域有广阔的应用前景。在检测正丙醇领域有广阔的应用前景。在检测正丙醇领域有广阔的应用前景。


技术研发人员:卢革宇 高原 高雨冰 周伟荣
受保护的技术使用者:吉林大学
技术研发日:2022.03.18
技术公布日:2022/7/5
转载请注明原文地址: https://www.8miu.com/read-9344.html

最新回复(0)