一种co-mo-b/n-pcn复合纳米材料及其制备方法和应用
技术领域
1.本发明涉及催化化学技术领域,具体涉及一种co-mo-b/n-pcn复合纳米材料及其制备方法和应用。
背景技术:2.能源是人类赖以生存的重要物质,是人类发展中的重要资源。近年来,随着化石燃料消耗和空气污染的出现,各种可再生能源引起了大家的广泛关注和研究。其中,氢是最有希望取代传统化石资源的候选能源,因为氢比石油、煤炭或天然气具有更高的热值。此外,氢气燃烧的唯一产物是水。然而,氢能利用的发展在实际商业化中仍面临着许多挑战。例如,氢气的储存和运输被认为是紧迫的问题之一。目前,与广泛使用的物理储氢技术相比,化学储氢技术在未来具有更好的发展前景。其中,探索了一些化学储氢材料,如libh4、mgh2、lialh4和nabh4。
3.在这些化学氢化物中,硼氢化钠被认为是一种有前途的氢化物。硼氢化钠(nabh4)储氢密度大(理论含氢量高达10.8 wt.%),同时价格低廉、稳定性好、易溶于水、无毒。硼氢化钠水解制氢过程操作简单、方便可控。硼氢化钠的水解方程式为:nabh4+2h2o
→
nabo2+4h2。室温条件下,硼氢化钠在水溶液中不稳定会发生自水解。
4.目前的研究工作大多集中于催化剂的制备,钴基催化剂因为成本低,催化活性适中,引起了大家的关注。然而,其团聚问题、催化活性和循环稳定性仍难以满足商业应用的要求。因此,必须探索一些稳定钴基催化剂的新方法。目前,有许多碳材料因具有大的比表面积、多的孔隙等特点被大家广泛关注。例如,碳纳米管、mofs和氧化石墨烯已经被证明能够提高co基催化剂的催化活性。但是由于这些材料的制备时间长、制备过程复杂等原因导致其不能被大范围的应用。
5.其中一种方法是利用静电纺丝工艺制备材料。静电纺丝工艺的成本低、操作简单,能够制备出具有高比表面积、高孔隙率的纳米纤维。现有文献1(li f, li j, chen l, dong y, xie p, li q. hydrogen production through hydrolysis of sodium borohydride: highly dispersed cob particles immobilized in carbon nanofibers as a novel catalyst. int j hydrogen energ. 2020;45:32145-56.)使用静电纺丝技术制备了纳米纤维固定cob,即cob/cn催化剂。实验结果表明,碳纳米纤维可以有效的分散、固定cob纳米颗粒,但是cob纳米颗粒仍存在团聚问题。同时,在25℃下,产氢速率为473.3ml
·
min-1
·
g-1
。因此,催化性能有待进一步提高。
6.现有文献2(ingersoll jc, mani n, thenmozhiyal jc, muthaiah a. catalytic hydrolysis of sodium borohydride by a novel nickel
–
cobalt
–
boride catalyst. journal of power sources. 2007;173:450-7.)采用化学还原法制备了纳米结构的co-ni-b催化剂。实验结果发现co-ni-b颗粒大小不均,且颗粒团聚现象严重。产氢速率为2608ml
·
min-1
·
g-1
。双金属掺杂后有效地提高了催化性能,但是颗粒团聚问题仍未得到解决。为了继续研究双金属掺杂对硼氢化钠水解反应的影响。
7.现有文献3(ke d, tao y, li y, zhao x, zhang l, wang j, et al. kinetics study on hydrolytic dehydrogenation of alkaline sodium borohydride catalyzed by mo-modified co
–
b nanoparticles. int j hydrogen energ. 2015;40:7308-17.)采用共沉积化学还原法制备了mo改性cob纳米颗粒。未加入mo元素,cob纳米颗粒呈现不规则层状结构,颗粒较大,平均直径为50-100nm,团聚严重。合成的co-mo-b纳米颗粒粒径较小,平均直径为30nm,分布均匀,比表面积较大,团聚不明显。放氢速率为4200 ml
·
min-1
·
g-1
和活化能为43.7kj
·
mol-1
。通过实验结果可知,mo元素的加入改变了纳米颗粒的形状,改善了团聚现象,促进了水的解离,提高了硼氢化钠的水解反应。
8.虽然co和mo掺杂后有效地提高了综合性能。但是我们通过阅读大量文献发现,大家选择真空或者冷冻干燥法只描述了干燥样品。现有文献4(li j, hong x, wang y, luo y, huang p, li b, et al. encapsulated cobalt nanoparticles as a recoverable catalyst for the hydrolysis of sodium borohydride. energy storage materials. 2020;27:187-97.)使用真空干燥法干燥得到co@nmgc催化剂。现有文献5(peng c, li t, zou y, xiang c, xu f, zhang j, et al. bacterial cellulose derived carbon as a support for catalytically active co
–
b alloy for hydrolysis of sodium borohydride. int j hydrogen energ. 2021;46:666-75.)使用冷冻干燥法干燥得到bc/co-b复合纳米材料。通过文献可知,大家利用干燥方法干燥自己的样品,并没有说明选择真空或者冷冻干燥方法对自己的样品有何影响。本文在干燥样品的时候选择了真空和冷冻干燥两种方法。我们发现两者对样品的形貌、性能存在一定的影响。因此,探究金属间的协同作用和负载材料的支持分散作用来提高催化剂的性能,并对其工艺进行优化,有很好的发展前景,具有重要的研究和现实意义。
9.在解决上述问题时,还需要解决以下问题:1、氮掺杂多孔碳纳米纤维n-pcn载体的制备;2、还原金属粒子尺寸不均,容易发生团聚。
技术实现要素:10.本发明的目的是提供一种co-mo-b/n-pcn复合纳米材料及其制备方法,和作为硼氢化钠水解制氢催化剂的应用。
11.本发明针对现有技术存在的技术问题,采用以下方式来解决上述问题:1、通过静电纺丝技术制备pan-ps纳米纤维;2、将pan-ps纳米纤维进行高温烧结活化得到氮掺杂多孔碳纳米纤维n-pcn载体,增强其与金属粒子的相互作用,增强锚定co、mo的功能;3、采用浸渍和原位还原法,保证co-mo-b纳米颗粒均匀稳定的分布在氮掺杂多孔碳纳米纤维n-pcn载体上。
12.4、调控co和mo的比例,co-mo-b/n-pcn催化剂催化nabh4水解反应来研究电子结构对催化活性的影响规律。
13.5、通过干燥方法的选择来研究对形貌以及催化性能的影响。
14.为了实现上述发明目的,本发明采用的技术方案为:一种co-mo-b/n-pcn复合纳米材料,以聚丙烯腈和聚苯乙烯为原料,经静电纺丝和
煅烧得到氮掺杂多孔碳纳米纤维n-pcn载体,然后,将可溶性钼盐和可溶性钴盐通过硼氢化钠溶液原位还原到n-pcn载体上,最后,进行冷冻干燥即可得到co-mo-b/n-pcn复合纳米材料;具有非晶态结构,其比表面积为60-110 m2·
g-1
;介孔尺寸为10-18nm;所得材料具有磁性,能被磁铁吸引,可以通过磁性进行回收循环利用,回收率为99.6-100%。
15.一种co-mo-b/n-pcn复合纳米材料的制备方法,包括以下步骤:步骤1,氮掺杂多孔碳纳米纤维载体的制备,以聚丙烯腈和聚苯乙烯满足一定质量比,将聚丙烯腈与聚苯乙烯溶于dmf搅拌均匀,然后,在一定条件下进行静电纺丝,所得产物在一定条件下进行真空干燥,最后,在一定条件下进行煅烧活化,即可得到氮掺杂多孔碳纳米纤维载体,命名为n-pcn;所述步骤1中,聚丙烯腈和聚苯乙烯的质量比为2:1;所述静电纺丝的条件为,电压为18kv;所述烘干的条件为,烘干温度为60℃,烘干时间为24h;所述步骤1中,煅烧的条件为,在氮气气氛下煅烧,煅烧温度为800-1100℃,煅烧时间为1-6h;步骤2,co-mo-b/n-pcn复合纳米材料的制备,以co含量、mo含量和 n-pcn满足一定质量比,将na2moo4·
2h2o、co(no3)2·
6h2o和n-pcn加入水中进行搅拌和超声分散,得到反应液,同时,配制含有nabh4和naoh的还原剂溶液,然后,将还原剂溶液缓慢滴加到反应液中进行原位还原,反应完毕后,进行抽滤洗涤,即可得到未干燥的co-mo-b/n-pcn复合纳米材料;所述步骤2中,co含量、mo含量和 n-pcn的质量比为28:1:5;步骤3,co-mo-b/n-pcn复合纳米材料的冷冻干燥,在一定条件下进行冷冻干燥,即得到冷冻干燥的co-mo-b/n-pcn复合纳米材料;所述步骤3中,冷冻干燥的条件为,先在冷冻温度为-4℃,冷冻时间为24h的条件下进行冷冻,然后,在冷冻干燥温度为-50℃,冷冻干燥时间为48h。
16.一种co-mo-b/n-pcn复合纳米材料作为硼氢化物水解制氢催化剂的应用,催化硼氢化钠水解放氢速率为2500-3500 mol
·
ml-1
·
g-1
;催化放氢的活化能ea为30-38 kj
·
mol-1
;可以通过磁铁进行吸引回收,经过5次循环后,回收率达到80%,产氢速率保持在1000-3500 mol
·
ml-1
·
g-1
,即保持初次产氢速率的70-90%。
17.本发明经xrd、sem、tem、bet等检测可知:xrd测试结果为,co-mo-b/n-pcn复合纳米材料没有明显的峰,其为非晶态结构。
18.sem测试结果为,co-mo-b/n-pcn复合纳米材料形貌良好,均一性好,co-mo-b纳米颗粒均匀分散在氮掺杂多孔碳纳米纤维上且没有发生团聚。
19.tem测试结果为,co-mo-b/n-pcn复合纳米材料成功制备。
20.eds测试结果为,co-mo-b/n-pcn复合纳米材料由co、mo、b、c和n元素组成。
21.物理吸附分析测试结果为,co-mo-b/n-pcn复合纳米材料的比表面积为102.5557 m2·
g-1
,介孔尺寸为14.77nm。
22.放氢性能测试测试结果为,在25℃下co-mo-b/n-pcn复合纳米材料的放氢速率为2500-3500 mol
·
ml-1
·
g-1
。
23.动力学测试结果为,co-mo-b/n-pcn复合纳米材料的活化能为34.75 kj
·
mol-1
。
24.循环性能测试测试结果为,5次循环后的产氢速率保持初次的产氢速率的70-90%。
25.因此,本发明co-mo-b/n-pcn复合纳米材料相对于现有技术,具有以下优点:
1、选择冷冻干燥法,在低温下更有利于保护催化剂的结构和形貌,冷冻干燥法获得的催化剂具有颗粒形状规则、粒径小而均匀、粒度分布窄、粒子间无团聚、分散性好等特点。
26.2、本发明制备的co-mo-b/n-pcn复合纳米材料催化剂具有磁性,易于分离回收,更加便于催化剂的循环使用;前期非铁磁性mo元素的加入,有效阻止了co-mo-b/n-pcn颗粒的生长,抑制了团聚,实现co-mo-b/n-pcn颗粒的均匀分布。所制备的co-mo-b/n-pcn复合纳米材料催化剂具有较高的催化性能和可循环稳定性。
27.3、作为催化放氢材料的应用,co-mo-b/n-pcn复合纳米材料在25℃下具有高效的催化硼氢化钠水解制氢催化性能,放氢量为理论值的80-90 %,初次催化放氢在100 s完成,放氢速率达到3159.2 mol
·
ml-1
·
g-1
。作为催化放氢材料的应用,co-mo-b/n-pcn复合纳米材料在不同温度下催化硼氢化钠水解制氢,计算得出活化能为34.75 kj
·
mol-1
。
28.因此,本发明与现有技术相比制作过程简单,原料成本价格低且产物无污染,具有更优良的催化性能,提高了催化速率,在硼氢化钠水解制氢领域中具有广阔的应用前景。
29.附图说明:图1为实施例1与对比例2中co-mo-b/n-pcn、n-pcn和co-b/n-pcn复合纳米材料的xrd图;图2为实施例1中步骤1所得到的氮掺杂多孔碳纳米纤维n-pcn材料的sem图;图3为实施例1中步骤3所得到的co-mo-b/n-pcn复合纳米材料的sem图;图4为实施例1与对比例1中co-mo-b/n-pcn、n-pcn和co-b/n-pcn复合纳米材料的物理吸附图;图5为实施例1与对比例1、对比例2中co-mo-b/n-pcn、n-pcn、co-b/n-pcn和co-mo-b/n-pcn-v复合纳米材料在25℃下的硼氢化钠水解放氢速率图;图6为实施例1中co-mo-b/n-pcn复合纳米材料在不同温度下的硼氢化钠水解放氢速率图以及相应的活化能图;图7为实施例1中co-mo-b/n-pcn复合纳米材料的循环性能图;图8为对比例1中co-b/n-pcn复合纳米材料的sem图;图9为实施例1中co-mo-b/n-pcn复合纳米材料的tem和eds图。
具体实施方式
30.本发明通过实施例,结合说明书附图对本发明内容作进一步详细说明,但不是对本发明的限制。
31.实施例1一种co-mo-b/n-pcn复合纳米材料的制备方法,包括以下步骤:步骤1,氮掺杂多孔碳纳米纤维载体的制备,以聚丙烯腈pan和聚苯乙烯ps满足质量比为2:1,将5 g pan与2.5 g ps溶于20 ml dmf后搅拌24h,待搅拌均匀后,在电压为18kv的条件下进行静电纺丝,所得产物在烘干温度为60℃,烘干时间为24h的条件下进行真空干燥,最后,在氮气气氛下煅烧,煅烧温度为1000℃,煅烧时间为6h的条件下进行煅烧活化,即可得到氮掺杂多孔碳纳米纤维载体,命名为n-pcn;步骤2,co-mo-b/n-pcn复合纳米材料的制备,以co含量、mo含量和 n-pcn满足质量
比为28:1:5,将0.02 g na2moo4·
2h2o、0.56 g co(no3)2·
6h2o和0.1 g n-pcn加入水中进行搅拌和超声分散,得到反应液,同时,配制nabh4浓度为1.5 wt.%,naoh浓度为1.0 wt.%的还原剂溶液,然后,将100 ml还原剂溶液缓慢滴加到反应液中进行原位还原,反应完毕后,进行抽滤洗涤直至ph=7,即可得到未干燥的co-mo-b/n-pcn复合纳米材料;步骤3,co-mo-b/n-pcn复合纳米材料的冷冻干燥,先在冷冻温度为-4℃,冷冻时间为24h的条件下进行冷冻,然后,在冷冻干燥温度为-50℃,冷冻干燥时间为48h的条件下进行冷冻干燥,即得到冷冻干燥的co-mo-b/n-pcn复合纳米材料,命名为co-mo-b/n-pcn。
32.为了证明本发明材料的成分,对步骤1所得材料n-pcn和步骤3所得材料co-mo-b/n-pcn进行xrd测试,结果如图1所示。
33.n-pcn的xrd结果为,26.2
°
和44.3
°
处的峰分别对应于石墨碳的(002)和(101)晶面;co-mo-b/n-pcn的xrd结果为,没有明显的峰,表明其为无定型的。并且在co-mo-b/n-pcn的xrd结果中没有发现属于n-pcn的石墨峰,测试结果表明,掺杂金属纳米颗粒后,衍射峰强度有所降低。co-mo-b/n-pcn复合纳米材料为非晶态结构,非晶态有利于提高不饱和位点和活性区域,进而提高纳米复合材料的催化活性。
34.为了进一步证明金属粒子掺杂成功,对步骤1所得材料n-pcn和步骤3所得材料co-mo-b/n-pcn进行tem和eds测试。结果如图9所示,通过tem图像,金属粒子成功负载在n-pcn载体上,并且分布均匀无团聚现象。表明co-mo-b/n-pcn材料成功制备;通过eds图像,co-mo-b/n-pcn材料由co、mo、b、c和n元素组成。同时,eds图中n元素的存在说明了在1000℃氮气气氛中煅烧,成功的将n元素掺杂。
35.为了证明材料的微观形貌,对步骤1所得材料n-pcn和步骤3所得材料co-mo-b/n-pcn进行sem测试。如图2和图3所示,n-pcn材料为不规则孔状碳纤维堆叠而成;co-mo-b/n-pcn材料形貌良好,均一性好,而且纳米颗粒均匀分散没有发生团聚。
36.测试结果表明,在氮掺杂多孔碳纳米纤维n-pcn载体上掺杂co-mo-b纳米颗粒是提高分散度和减少团聚的有效方法。
37.为了进一步量化多孔碳的特征,以及证明掺杂金属对材料微观形貌的影响,对步骤1所得材料n-pcn和步骤3所得材料进行物理吸附分析,具体为,在180℃下脱气12小时,然后,在77k下进行物理吸附测试。测试结果如图4所示,n-pcn材料的比表面积为3.5698 m2·
g-1
,介孔尺寸为22.29 nm;co-mo-b/n-pcn材料的比表面积为102.5557 m2·
g-1
,介孔尺寸为14.77nm。
38.测试结果表明,氮掺杂多孔碳纳米纤维n-pcn材料能够将纳米颗粒很好的限制在表面,从而提高纳米颗粒的分散性和稳定性。加入co-mo-b纳米颗粒后有效地增加了表面积。
39.为了证明步骤1所得材料n-pcn和步骤3所得材料co-mo-b/n-pcn的硼氢化钠水解制氢性能,进行催化硼氢化钠水解放氢性能测试,具体测试方法为:在通风橱中,通过恒温水浴锅控制温度,然后,分别称取0.1g n-pcn 和co-mo-b/n-pcn材料均匀分散到0.15m nabh
4 的1%naoh溶液中,采用排水集气法进行收集氢气并记录单位时间内氢气的体积,并计
算得到放氢速率。测试结果如图5所示,n-pcn材料在25℃条件下的放氢速率为128.0 mol
·
ml-1
·
g-1
;co-mo-b/n-pcn材料在25℃下催化硼氢化钠水解制氢,计算得出放氢速率为3159.2 mol
·
ml-1
·
g-1
。
40.测试结果证明氮掺杂多孔碳纳米纤维n-pcn材料负载纳米颗粒后增加了活性位点,催化活性增强,放氢性能得到了提高。
41.为了进一步通过反应动力学证明co-mo-b/n-pcn材料对硼氢化钠水解制氢性能的影响,进行不同温度下的硼氢化钠水解放氢性能测试,并通过拟合阿伦尼乌斯曲线进行计算获得活化能。具体方法为,分别在15℃、25℃、35℃、45℃条件下进行催化硼氢化钠放氢性能测试。测试结果如图6和表1所示,随着温度的增加,放氢速率越高;经过阿伦尼乌斯方程拟合得活化能ea=34.75 kj
·
mol-1
。
42.表1不同温度下催化硼氢化钠水解的放氢性能温度(℃)15253545放氢速率(mol
·
ml-1
·
g-1
)44.13159.2390.54395.02为了进一步证明co-mo-b/n-pcn的循环性能,对co-mo-b/n-pcn材料进行循环性能测试。具体测试方法为,将完成放氢性能测试的co-mo-b/n-pcn再次进行放氢性能测试,即可获得循环性能。测试结果如图7和表2所示,5次循环后的产氢速率保持初次的产氢速率的75%。
43.表2循环性能数据表循环次数12345放氢速率(mol
·
ml-1
·
g-1
)3159.22997.82763.42534.12369.5为了证明步骤3干燥法对硼氢化钠水解制氢性能的影响,提供对比例1,即采用真空干燥法的制备方法。
44.对比例1一种基于真空干燥法的co-mo-b/n-pcn-v复合纳米材料,未具体特别说明的步骤与实施例1制备方法相同,不同在于:所述步骤3采用真空干燥法代替冷冻干燥法,具体真空干燥的条件为,真空干燥的温度为60℃,真空干燥的时间为24h,所得材料命名为co-mo-b/n-pcn-v。
45.放氢性能测试结果如图5所示,在60℃真空干燥箱得到的co-mo-b/n-pcn-v的放氢速率为2630.8 mol
·
ml-1
·
g-1
。
46.通过对比例1得到的co-mo-b/n-pcn-v与实施例1得到的co-mo-b/n-pcn相比可知,冷冻干燥后得到的co-mo-b/n-pcn的催化性能比真空干燥得到的co-mo-b/n-pcn-v催化性能好。
47.上述现象的原因是:冷冻干燥的温度为-50℃,在低温下更有利于保护催化剂的结构和形貌,冷冻干燥法获得的催化剂具有颗粒形状规则、粒径小而均匀、粒度分布窄、粒子间无团聚、分散性好等特点;真空干燥的温度为60℃,温度高的情况下会改变催化剂的原有结构和形貌,样品表面会发生硬化现象。
48.为了证明双金属粒子掺杂对硼氢化钠水解制氢性能的影响,提供对比例2,即不添加mo元素的co-b/n-pcn复合纳米材料。
49.对比例2一种不含mo的co-b/n-pcn复合纳米材料,未具体特别说明的步骤与实施例1制备方法相同,不同在于:所述步骤2不添加na2moo4·
2h2o,所得材料命名为co-b/n-pcn。
50.sem测试结果如图8所示,虽然cob颗粒均匀分布在氮掺杂多孔碳纳米纤维n-pcn上,但是,cob颗粒尺寸较大。造成上述现象的原因是,由于co
2+
和bh
4-在氧化/还原反应过程中放热引起较高的表面能,导致cob颗粒出现了严重的团聚现象。
51.该实验结果与实施例1相比较可知,由于非铁磁性mo元素的加入,有效阻止了co-mo-b/n-pcn颗粒的生长,抑制了团聚,实现co-mo-b/n-pcn颗粒的均匀分布。
52.物理吸附分析测试结果如图4所示,co-b/n-pcn复合纳米材料的比表面积为24.0691 m2·
g-1
,介孔尺寸为27.41nm。实验结果表明,比表面积减小,介孔尺寸变小,该实验现象支持上述cob颗粒发生团聚的结论。
53.放氢性能测试测试结果如图5所示,在25℃条件下,co-b/n-pcn复合纳米材料的放氢速率为989.3 mol
·
ml-1
·
g-1
。
54.通过实施例1与对比例2结论进行比较分析,结果表明:实施例1得到co-mo-b/n-pcn的放氢速率比对比例2得到co-b/n-pcn的放氢速率高三倍,其原因为,co-mo-b/n-pcn颗粒明显减小且分布均匀,即对介孔尺寸进行了调控,提高比表面积。其原因为,mo元素的存在提高了催化剂的分散和稳定性,减小了cob的团聚问题,增加了活性物质与nabh4反应时的接触面积。同时,mo与co之间的协同作用也提高了nabh4水解反应的进行。
55.因此,co-mo-b/n-pcn不仅具有较高的产氢速率而且具有较低的活化能,表明其是一种有前景的催化nabh4水解材料。另外co-mo-b/n-pcn催化剂的制备简单、成本低,因此该材料具有巨大的应用潜力。
技术特征:1.一种co-mo-b/n-pcn复合纳米材料,其特征在于:以聚丙烯腈和聚苯乙烯为原料,经静电纺丝和煅烧得到氮掺杂多孔碳纳米纤维n-pcn载体,然后,将可溶性钼盐和可溶性钴盐通过硼氢化钠溶液原位还原到n-pcn载体上,最后,进行冷冻干燥即可得到co-mo-b/n-pcn复合纳米材料。2.根据权利要求1所述的co-mo-b/n-pcn复合纳米材料,其特征在于:所述co-mo-b/n-pcn复合纳米材料为非晶态结构,其比表面积为60-110 m2·
g-1
;介孔尺寸为10-18nm。3.根据权利要求1所述的co-mo-b/n-pcn复合纳米材料,其特征在于:所得材料具有磁性,能被磁铁吸引,可以通过磁性进行回收循环利用,回收率为99.6-100%。4.一种co-mo-b/n-pcn复合纳米材料的制备方法,其特征在于包括以下步骤:步骤1,氮掺杂多孔碳纳米纤维载体的制备,以聚丙烯腈和聚苯乙烯满足一定质量比,将聚丙烯腈与聚苯乙烯溶于dmf搅拌均匀,然后,在一定条件下进行静电纺丝,所得产物在一定条件下进行真空干燥,最后,在一定条件下进行煅烧活化,即可得到氮掺杂多孔碳纳米纤维载体,命名为n-pcn;步骤2,co-mo-b/n-pcn复合纳米材料的制备,以co含量、mo含量和 n-pcn满足一定质量比,将na2moo4·
2h2o、co(no3)2·
6h2o和n-pcn加入水中进行搅拌和超声分散,得到反应液,同时,配制含有nabh4和naoh的还原剂溶液,然后,将还原剂溶液缓慢滴加到反应液中进行原位还原,反应完毕后,进行抽滤洗涤,即可得到未干燥的co-mo-b/n-pcn复合纳米材料;步骤3,co-mo-b/n-pcn复合纳米材料的冷冻干燥,在一定条件下进行冷冻干燥,即得到冷冻干燥的co-mo-b/n-pcn复合纳米材料。5.根据权利要求4所述的制备方法,其特征在于:所述步骤1中,聚丙烯腈和聚苯乙烯的质量比为2:1;所述静电纺丝的条件为,电压为18kv;所述烘干的条件为,烘干温度为60℃,烘干时间为24h。6.根据权利要求4所述的制备方法,其特征在于:所述步骤1中,煅烧的条件为,在氮气气氛下煅烧,煅烧温度为800-1100℃,煅烧时间为1-6h。7.根据权利要求4所述的制备方法,其特征在于:所述步骤2中,co含量、mo含量和 n-pcn的质量比为28:1:5。8.根据权利要求4所述的制备方法,其特征在于:所述步骤3中,冷冻干燥的条件为,先在冷冻温度为-4℃,冷冻时间为24h的条件下进行冷冻,然后,在冷冻干燥温度为-50℃,冷冻干燥时间为48h。9.一种co-mo-b/n-pcn复合纳米材料作为硼氢化物水解制氢催化剂的应用,其特征在于:催化硼氢化钠水解放氢速率为2500-3500 mol
·
ml-1
·
g-1
;催化放氢的活化能ea为30-38 kj
·
mol-1
。10.一种co-mo-b/n-pcn复合纳米材料作为硼氢化物水解制氢催化剂的应用,其特征在于:可以通过磁铁进行吸引回收,经过5次循环后,回收率达到80%,产氢速率保持在1000-3500 mol
·
ml-1
·
g-1
,即保持初次产氢速率的70-90%。
技术总结本发明公开了一种Co-Mo-B/N-PCN复合纳米材料,以聚丙烯腈和聚苯乙烯为原料,经静电纺丝和煅烧得到氮掺杂多孔碳纳米纤维N-PCN载体,然后,将可溶性钼盐和可溶性钴盐通过硼氢化钠溶液原位还原到N-PCN载体上,最后,进行冷冻干燥即可制得。具有非晶态结构,其比表面积为60-110 m2·
技术研发人员:李彬 李华栓 周天昊 杨芷程 杨瑜锴 张浩华 徐芬 孙立贤 邹勇进
受保护的技术使用者:桂林电子科技大学
技术研发日:2022.05.17
技术公布日:2022/7/5