1.本发明涉及计算机视觉技术领域,特别涉及一种基于相关滤波器的目标跟踪方法、系统、存储介质及设备。
背景技术:2.目标跟踪技术是计算机视觉、多媒体信息处理等领域的重要技术之一。目标跟踪可以用于军事侦察、视频监控、交通监测、视频编辑、运动分析、人机交互、虚拟现实、自动驾驶等军事和民用领域,具有广泛的应用前景。
3.一个典型的目标跟踪系统主要包括三个部分,即表观模型、运动模型和更新模型。在进行目标跟踪时,首先,根据第一帧图像及初始化信息建立表观模型,用于对感兴趣目标进行建模表示;其次,基于之前帧中的跟踪结果,利用运动模型预测目标可能出现的位置或者选择候选样本;再次,利用表观模型计算候选位置或候选样本的似然值,确定目标在当前帧的位置和状态;最后,根据得到的跟踪结果,利用更新模型对表观模型进行更新,以适应目标自身和周围环境的变化。
4.表观模型是目标跟踪系统的核心,直接关系到跟踪的效果。当前,根据是否使用背景信息,表观模型可以分为生成式模型和鉴别式模型。生成式模型仅利用目标自身的信息来建模。其中最简单的生成式模型为模板匹配,通过将第一帧选定的待跟踪目标区域作为匹配模板,在后续帧中选择与模板匹配误差最小的候选区域作为跟踪结果。其他的代表性算法包括基于子空间学习的目标跟踪方法、基于稀疏表示的目标跟踪算法等。鉴别式模型同时利用目标自身和背景信息构建表观模型,往往可以取得更好的跟踪效果。
5.现有技术中,由于鉴别式模型方法在使用目标样本特征建立目标的表观模型时,往往对特征不加选择地全部使用,导致表观模型鲁棒性差、跟踪误差大、易发生跟踪漂移等问题。
技术实现要素:6.基于此,本发明的目的是提供一种于相关滤波器的目标跟踪方法、系统、存储介质及设备,用于解决现有技术中鉴别式模型方法在使用目标样本特征建立目标的表观模型时,由于对特征不加选择地全部使用,导致表观模型鲁棒性差、跟踪误差大、易发生跟踪漂移等问题。
7.本发明一方面提供一种基于相关滤波器的目标跟踪方法,所述方法包括:获取鲁棒性相关滤波器模型,通过采样窗口策略采集基准样本,使用环移位方式对所述基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型;根据所述表观模型计算当前帧样本与上一帧样本之间的相似度,并判断所述相似度是否高于阈值;当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与所
述训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据所述新训练样本集计算得出新表观模型,根据所述新表观模型进行目标定位。
8.上述基于相关滤波器的目标跟踪方法,通过采样窗口策略采集基准样本,使用环移位方式对基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型,从而建立了新型鲁棒性相关滤波器模型,替换了传统的相关滤波器模型,进一步的,根据表观模型计算当前帧样本与上一帧样本之间的相似度,并判断相似度是否高于阈值,从而对样本特征进行选择,当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据新训练样本集计算得出新表观模型,根据新表观模型进行目标定位,根据相邻样本相似度更新训练样本集的模型更新方法,降低样本集特征的不稳定性,降低了跟踪误差,解决了现有技术中鉴别式模型方法在使用目标样本特征建立目标的表观模型时,由于对特征不加选择地全部使用,导致表观模型鲁棒性差、跟踪误差大、易发生跟踪漂移等问题。
9.另外,根据本发明上述的基于相关滤波器的目标跟踪方法,还可以具有如下附加的技术特征:进一步地,所述获取鲁棒性相关滤波器模型的步骤包括:获取相关滤波器、并识取所述相关滤波器中的目标参数,将所述目标参数作为回归目标函数的正则项,以构建鲁棒性相关滤波器模型。
10.进一步地,所述判断所述相似度是否高于阈值的步骤之后还包括:当相似度高于阈值时,则不对训练样本集进行更新,使用在上一帧中使用的表观模型进行目标定位。
11.进一步地,所述通过相关滤波方法对模型参数进行加速求解以构建得到表观模型的步骤之后包括:利用所述表观模型在下一帧中的基准样本对目标进行跟踪定位。
12.进一步地,所述通过所述表观模型在下一帧中的基准样本对目标进行跟踪定位的步骤包括:利用所述表观模型在下一帧中的基准样本进行响应值计算,根据最大响应值位置确定下一帧中目标位置。
13.进一步地,所述对模型参数进行加速求解以构建得到表观模型的步骤包括:通过相关滤波方法对模型参数进行加速求解以构建得到表观模型。
14.本发明另一方面提供一种基于相关滤波器的目标跟踪系统,所述系统包括:构建模块,用于获取鲁棒性相关滤波器模型,通过采样窗口策略采集基准样本,使用环移位方式对所述基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型;判断模块,用于根据所述表观模型计算当前帧样本与上一帧样本之间的相似度,并判断所述相似度是否高于阈值;定位模块,用于当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与所述训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据所述新训练样本集计算得出新表观模型,根据所述新表观模型进行目标定位。
15.本发明另一方面提供一种计算机可读存储介质,其上存储有计算机程序,该程序
被处理器执行时实现如上述的基于相关滤波器的目标跟踪方法。
16.本发明另一方面还提供一种数据处理设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述的基于相关滤波器的目标跟踪方法。
附图说明
17.图1为本发明第一实施例中基于相关滤波器的目标跟踪方法的流程图;图2为本发明第二实施例中基于相关滤波器的目标跟踪方法的流程图;图3为本发明第三实施例中基于相关滤波器的目标跟踪系统的系统框图。
18.如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
19.为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
20.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
21.实施例一请参阅图1,所示为本发明第一实施例中的基于相关滤波器的目标跟踪方法,所述方法包括步骤s101-s103:s101、获取鲁棒性相关滤波器模型,通过采样窗口策略采集基准样本,使用环移位方式对基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型。
22.作为一个具体示例,获取相关滤波器、并识取相关滤波器中的目标参数,将目标参数作为回归目标函数的正则项,以构建鲁棒性相关滤波器模型。具体的,通过相关滤波方法对模型参数进行加速求解以构建得到表观模型。
23.s102、根据表观模型计算当前帧样本与上一帧样本之间的相似度,并判断相似度是否高于阈值。
24.具体的,利用表观模型在下一帧中的基准样本进行响应值计算,根据最大响应值位置确定下一帧中目标位置。
25.s103、当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据新训练样本集计算得出新表观模型,根据新表观模型进行目标定位。
26.综上,本发明上述实施例当中的基于相关滤波器的目标跟踪方法,通过采样窗口策略采集基准样本,使用环移位方式对基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型,从而建立了新型鲁棒性相关滤波器模型,替换了传统的相关滤波器模型,进一步的,根据表观模型计算当前帧样本与上一帧样本之间的
相似度,并判断相似度是否高于阈值,从而对样本特征进行选择,当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据新训练样本集计算得出新表观模型,根据新表观模型进行目标定位,根据相邻样本相似度更新训练样本集的模型更新方法,降低样本集特征的不稳定性,降低了跟踪误差,解决了现有技术中鉴别式模型方法在使用目标样本特征建立目标的表观模型时,由于对特征不加选择地全部使用,导致表观模型鲁棒性差、跟踪误差大、易发生跟踪漂移等问题。
27.实施例二请查阅图2,所示为本发明第二实施例中的基于相关滤波器的目标跟踪方法,所述方法包括步骤s201-s205:s201、获取鲁棒性相关滤波器模型,通过采样窗口策略采集基准样本,使用环移位方式对基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型。
28.(1)鲁棒性相关滤波器模型的构建在相关滤波器模型的基础上,将参数w的l
2,1
范数作为回归目标函数的正则项,构建新的鲁棒性相关滤波器模型。假设训练样本集为x,其中的样本元素为xi,yi表示样本标签,w表示模型参数,λ表示惩罚参数,鲁棒性相关滤波器模型的优化目标函数由公式(1)表示。
29.在由公式(1)表示的优化问题中,模型参数w为待优化参数。
30.(2)鲁棒性相关滤波器模型的求解使用训练样本集矩阵x和与其对应的标签集y替换公式(1)中的xi和yi,可将公式(1)转化为由公式(2)表示的矩阵形式。
31.其中w表示参数的矩阵形式,表示参数w的l
2,1
范数,其计算方式为。对公式(2)中参数w的求解,可将公式(2)转化为公式(3)中的形式。
32.使得 将约束条件带入到目标函数,得到目标函数的增广拉格朗日形式,由公式(4)表示。
33.其中u为增广拉格朗日乘子,ρ》0为惩罚系数。为了便于对公式(4)求解,将公式(4)中的项与合并,对公式(4)进行等价变换得到公式(5)。
34.将公式(5)中的替换为z,可得到公式(6)。
35.随后对公式(6)中的参数w,v,u分别进行迭代求解。
36.第一步:固定参数v,z,以参数w为变量进行求解。此时,优化问题变为关于w的最优化问题,其存在闭式解,由公式(7)表示。
37.第二步:固定参数w,z,以参数v为变量进行求解。此时,优化问题变为关于v的最优化问题,其存在闭式解,由公式(8)表示。
38.第三步:固定参数w,v,以参数z为变量进行求解。此时,优化问题变为关于z的梯度下降求解问题,其存在闭式解,由公式(9)所示。
39.开始迭代求解前,设置参数v和z的初始值为零矩阵。
40.(3)基于鲁棒性相关滤波器的表观模型构建本发明通过循环采样的方式采集训练样本。假设目标在当前帧的位置为,目标区域宽度为w,高度为h。采样窗口的中心位置为,采样窗口的宽度为,高度,其中为采样窗口系数。通过采样窗口选取基准样本x,将基准样本x中的元素循环移位得到不同的循环样本,将这些循环样本按照移位的顺序组合构建得到循环样本矩阵x,实现样本的采集。
41.由于公式(7)中存在大量矩阵乘法与求逆运算,因此利用相关滤波方法对公式(7)进行加速求解。由于样本集x的形式为循环样本矩阵,利用循环样本矩阵可对其进行傅里叶对角化的特点,即,其中f为离散傅里叶矩阵,为f的共轭转置矩阵,且有,diag表示对角矩阵,为基准样本的傅里叶形式,由得出。将公式(7)中的关于x的项替换为对应的傅里叶形式,其结果由公式(10)所示。
42.其中表示点乘。将公式(10)中的等式两端左乘,并将其中的y,v,z项转为相应的傅里叶形式可将公式(10)化简,化简后的形式由公式(11)所示。
43.将公式(11)中的等式两端同时取共轭,去掉对角矩阵符号得到最终的求解结果,由公式(12)所示。
44.迭代过程中的可由得到。经过上述三个步骤不断迭代,直到w的值收敛,可求得使得目标函数取得最小值的模型参数w。
45.s202、利用表观模型在下一帧中的基准样本对目标进行跟踪定位。
46.本技术中,通过训练得到的表观模型,在下一帧中对目标进行跟踪定位。首先,在当前帧中进行样本采集,得到基准样本x,并通过傅里叶变换得到其傅里叶形式。其次,设目标位置标签数据在傅里叶域为以目标位置为中心的二维高斯分布,构建标签数据的傅里叶形式。再次,将与代入公式(12)中,根据上述三个步骤进行迭代求解,得到收敛的模型参数。最后,在下一帧中使用采样窗口采集基准样本,并通过傅里叶变换得到其傅里叶形式,将模型参数与下一帧样本进行点乘,依据响应值最大原则,其结果中最大响应值所在的位置即为下一帧中目标位置。
47.s203、根据表观模型计算当前帧样本与上一帧样本之间的相似度,并判断相似度是否高于阈值。
48.为了保证跟踪过程中表观模型的准确性,本发明设计相应的更新模型,对表观模型进行在线更新。本发明提出的更新模型通过根据相邻样本相似度的大小更新训练样本集实现模型更新。在得到跟踪结果之后,首先将当前帧样本与上一帧样本进行余弦相似度计算,若相似度低于阈值thu,将当前帧样本与训练样本集按照固定权重α加权叠加更新训练样本集,在下一帧进行目标定位前使用该训练样本集计算出新的表观模型。若相似度高于阈值thu,则不对训练样本集进行更新,使用在上一帧中使用的表观模型进行目标定位。
49.当相似度不高于阈值时,则执行步骤s204;当相似度高于阈值时,则执行步骤s205;s204、将提取当前帧的样本特征,并将提取后的特征样本与训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据新训练样本集计算得出新表观模型,根据新表观模型进行目标定位。
50.s205、不对训练样本集进行更新,使用在上一帧中使用的表观模型进行目标定位。
51.在本技术中,通过采样窗口策略采集基准样本,使用循环移位方式通过基准样本
生成循环样本,通过相关滤波方法对模型参数求解进行加速,得到表观模型,利用表观模型在下一帧中的基准样本进行相关操作,根据最大响应值位置确定跟踪结果。
52.进一步地,计算当前帧样本与上一帧样本之间的相似度,根据相似度是否高于阈值判断是否更新模型,相似度高于阈值时不进行更新,相似度低于阈值时,将提取当前帧的样本特征,并将特征样本与训练样本集进行加权叠加,得到新的训练样本集,使用该样本集重新训练鲁棒性相关滤波器模型,实现模型的更新,将更新后的模型用于后续帧的跟踪。
53.需要指出的是,本发明第二实施例所提供的方法,其实现原理及产生的一些技术效果和第一实施例相同,为简要描述,本实施例未提及之处,可参考第一实施例中相应内容。
54.综上,本发明上述实施例当中的基于相关滤波器的目标跟踪方法,通过采样窗口策略采集基准样本,使用环移位方式对基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型,从而建立了新型鲁棒性相关滤波器模型,替换了传统的相关滤波器模型,进一步的,根据表观模型计算当前帧样本与上一帧样本之间的相似度,并判断相似度是否高于阈值,从而对样本特征进行选择,当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据新训练样本集计算得出新表观模型,根据新表观模型进行目标定位,根据相邻样本相似度更新训练样本集的模型更新方法,降低样本集特征的不稳定性,降低了跟踪误差,解决了现有技术中鉴别式模型方法在使用目标样本特征建立目标的表观模型时,由于对特征不加选择地全部使用,导致表观模型鲁棒性差、跟踪误差大、易发生跟踪漂移等问题。
55.实施例三请参阅图3,所示为本发明第三实施例中的基于相关滤波器的目标跟踪系统,所述系统包括:构建模块,用于获取鲁棒性相关滤波器模型,通过采样窗口策略采集基准样本,使用环移位方式对所述基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型;判断模块,用于根据所述表观模型计算当前帧样本与上一帧样本之间的相似度,并判断所述相似度是否高于阈值;定位模块,用于当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与所述训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据所述新训练样本集计算得出新表观模型,根据所述新表观模型进行目标定位。
56.在一些可选实施例中,构建模块包括:获取单元,用于获取相关滤波器、并识取所述相关滤波器中的目标参数,将所述目标参数作为回归目标函数的正则项,以构建鲁棒性相关滤波器模型。
57.在一些可选实施例中,判断模块之后包括:执行模块,用于当相似度高于阈值时,则不对训练样本集进行更新,使用在上一帧中使用的表观模型进行目标定位。
58.在一些可选实施例中,构建模块之后包括:目标跟踪模块,用于利用所述表观模型在下一帧中的基准样本对目标进行跟踪定
位。
59.进一步地,目标跟踪模块包括:下一帧中目标位置确定单元,用于利用所述表观模型在下一帧中的基准样本进行响应值计算,根据最大响应值位置确定下一帧中目标位置。
60.进一步地,构建模块包括:加速求解单元,用于通过相关滤波方法对模型参数进行加速求解以构建得到表观模型。
61.综上,本发明上述实施例当中的基于相关滤波器的目标跟踪系统,通过采样窗口策略采集基准样本,使用环移位方式对基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型,从而建立了新型鲁棒性相关滤波器模型,替换了传统的相关滤波器模型,进一步的,根据表观模型计算当前帧样本与上一帧样本之间的相似度,并判断相似度是否高于阈值,从而对样本特征进行选择,当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据新训练样本集计算得出新表观模型,根据新表观模型进行目标定位,根据相邻样本相似度更新训练样本集的模型更新方法,降低样本集特征的不稳定性,降低了跟踪误差,解决了现有技术中鉴别式模型方法在使用目标样本特征建立目标的表观模型时,由于对特征不加选择地全部使用,导致表观模型鲁棒性差、跟踪误差大、易发生跟踪漂移等问题。
62.此外,本发明的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施例中方法的步骤。
63.此外,本发明的实施例还提出一种数据处理设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现上述实施例中方法的步骤。
64.在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
65.计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(ram),只读存储器(rom),可擦除可编辑只读存储器(eprom或闪速存储器),光纤装置,以及便携式光盘只读存储器(cdrom)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
66.应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下
列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(pga),现场可编程门阵列(fpga)等。
67.在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、
ꢀ“
示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
68.尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
技术特征:1.一种基于相关滤波器的目标跟踪方法,其特征在于,所述方法包括:获取鲁棒性相关滤波器模型,通过采样窗口策略采集基准样本,使用环移位方式对所述基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型;根据所述表观模型计算当前帧样本与上一帧样本之间的相似度,并判断所述相似度是否高于阈值;当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与所述训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据所述新训练样本集计算得出新表观模型,根据所述新表观模型进行目标定位。2.根据权利要求1所述的基于相关滤波器的目标跟踪方法,其特征在于,所述获取鲁棒性相关滤波器模型的步骤包括:获取相关滤波器、并识取所述相关滤波器中的目标参数,将所述目标参数作为回归目标函数的正则项,以构建鲁棒性相关滤波器模型。3.根据权利要求1所述的基于相关滤波器的目标跟踪方法,其特征在于,所述判断所述相似度是否高于阈值的步骤之后还包括:当相似度高于阈值时,则不对训练样本集进行更新,使用在上一帧中使用的表观模型进行目标定位。4.根据权利要求1所述的基于相关滤波器的目标跟踪方法,其特征在于,所述通过相关滤波方法对模型参数进行加速求解以构建得到表观模型的步骤之后包括:利用所述表观模型在下一帧中的基准样本对目标进行跟踪定位。5.根据权利要求4所述的基于相关滤波器的目标跟踪方法,其特征在于,所述通过所述表观模型在下一帧中的基准样本对目标进行跟踪定位的步骤包括:利用所述表观模型在下一帧中的基准样本进行响应值计算,根据最大响应值位置确定下一帧中目标位置。6.根据权利要求1所述的基于相关滤波器的目标跟踪方法,其特征在于,所述对模型参数进行加速求解以构建得到表观模型的步骤包括:通过相关滤波方法对模型参数进行加速求解以构建得到表观模型。7.一种基于相关滤波器的目标跟踪系统,其特征在于,所述系统包括:构建模块,用于获取鲁棒性相关滤波器模型,通过采样窗口策略采集基准样本,使用环移位方式对所述基准样本进行循环采样以得到训练样本集,并对模型参数进行加速求解以构建得到表观模型;判断模块,用于根据所述表观模型计算当前帧样本与上一帧样本之间的相似度,并判断所述相似度是否高于阈值;定位模块,用于当相似度不高于阈值时,将提取当前帧的样本特征,并将提取后的特征样本与所述训练样本集进行加权叠加以更新训练样本集并得到新训练样本集,并根据所述新训练样本集计算得出新表观模型,根据所述新表观模型进行目标定位。8.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6任一所述的基于相关滤波器的目标跟踪方法。9.一种数据处理设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行
的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-6任一所述的基于相关滤波器的目标跟踪方法。
技术总结本发明提供一种基于相关滤波器的目标跟踪方法、系统、存储介质及设备,方法包括:通过采样窗口策略采集基准样本,对基准样本进行循环采样得到训练样本集,对模型参数进行加速求解以构建得到表观模型;根据表观模型计算当前帧样本与上一帧样本之间的相似度并判断相似度是否高于阈值;若相似度不高于阈值,将提取当前帧的样本特征,并将提取后的特征样本与训练样本集进行加权叠加以更新训练样本集,根据新训练样本集计算得出新表观模型以进行目标定位。上述基于相关滤波器的目标跟踪方法、系统、存储介质及设备,通过建立新型鲁棒性相关滤波器模型,替换传统的相关滤波器模型,根据对样本特征进行选择,降低样本集特征的不稳定性及跟踪误差。性及跟踪误差。性及跟踪误差。
技术研发人员:赵思聪 曹扬 吴京辉 贾帅楠 吴双
受保护的技术使用者:北京航天晨信科技有限责任公司
技术研发日:2022.05.17
技术公布日:2022/7/5